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Abstract

Deep learning models, known for deciphering complex patterns, consistently excel across

various machine learning tasks. Training these models typically demands a large amount

of accurately labeled data. However, the aspiration for perfect datasets often meets the

challenges of real-world data collection. Acquiring precise labels is a daunting task due

to prohibitive costs, limited labeling resources, and the need for domain expertise. Some

datasets are characterized by incomplete labels, where a sizable portion remains unlabeled,

creating informational voids. Others are marred by noisy, where the provided annotations

deviate from the ground truth, posing risks of misdirection during model training. In more

challenging scenarios, datasets might suffer from both incomplete and noisy labels, further

complicating the training process.

The concept of multi-level labeled data reflects the multifaceted nature of data and the

different depths at which insights can be extracted. For instance, in detecting foodborne

illness from social media posts, the task at the post level is to determine if a post indicates

a potential foodborne illness event. At the word level, the aim is to identify specific enti-

ties such as symptoms or food items related to the incident. Depending on the objective,

labels at both two levels might be necessary, the difficulty and cost of obtaining these labels

can differ greatly. Multi-level labeled datasets often suffer from incomplete or noisy labels.

However, the interconnections between the two levels offer a unique advantage. The overall

context of a post provides valuable insights to better identify specific word-level slots, while

recognizing specific entities offers clarity on the broader message of the post. The label

quality, completeness issue, and the connection across levels emphasize the importance of

adaptive strategies to achieve improved outcomes.

Large Language Models (LLMs) have demonstrated remarkable performance across a

broad spectrum of tasks. They excel in in-context learning (ICL), where they make predic-
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tions based on a limited number of examples without needing updates to their parameters.

The Chain-of-Thought (CoT) method, which prompts LLMs to articulate their reasoning

steps in addition to providing the final answer, further enhances their capability to tackle

complex problems. LLMs can serve as annotators to mitigate the challenge of label scarcity.

However, the labels they generate may be noisy due to the models’ tendency to halluci-

nate. The effectiveness and potential issues of using LLMs for annotation warrant further

exploration.

My dissertation research centers on three directions to address the challenges posed

by incomplete, noisy, and multi-level labeled datasets. These directions are: 1) learning

from two-level labeled datasets with one level having complete labels and the other having

incomplete labels, 2) learning from datasets with noisy labels, and 3) in context learning

from two-level labeled datasets with incomplete labels.

Direction 1: Learning from two-level labeled datasets with one level having

complete labels and the other having incomplete labels. In practical scenarios, ob-

taining labels at a more fine-grained level is often more resource-intensive and challenging

than at broader levels. For instance, Human Attention Maps (HAMs) in text classification

comprise detailed word-level labels from human annotators. These labels serve as expla-

nations, derived from the influence each word has on human predictions. The process of

collecting HAMs is considerably more demanding than obtaining mere classification labels

about the sentence as a whole. This is because it necessitates annotators to invest significant

effort and time in evaluating every word within an extensive dataset.

In this context, we introduce a novel problem, which we call explainable text classifi-

cation with limited human attention supervision. The goal is to craft a classifier that offers

human-like explanations when comprehensive text classification labels are at hand, but only

a sparse set of HAMs are available. To address this challenge, we present HELAS, a pioneer-

ing solution that seamlessly integrates joint learning of tasks at both levels. This enhances
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both the text classification and human-like explanation tasks, even when faced with limited

supervision labels for the latter.

Direction 2: Learning from datasets with noisy labels. Obtaining meticulously

labeled data is both expensive and time-consuming, leading many researchers and practition-

ers to turn to alternate non-expert labeling sources, such as crowd-sourcing or automated

annotations using pre-trained models. While these methods enhance efficiency and cur-

tail expenses, they often compromise the integrity of the labels, resulting in noisy labels.

The challenge of learning with such labels has been a focal point of numerous studies. Yet

existing techniques presuppose knowledge about the proportion of noisy labels or their spe-

cific characteristics. In practical settings, this information is often unavailable, hindering

the effective application of these techniques. Further complications arise when noisy labels

are mishandled or mis-corrected, leading to compounded errors that can adversely impact

representation learning and induce overfitting.

Addressing these intricacies, we introduce CoLafier. Unlike existing models, this so-

lution harnesses the local intrinsic dimensionality (LID) score, derived from the enhanced

representation of training samples’ features and label, to discern between accurate and noisy

labels. CoLafier utilizes the LID score for adaptive instance weighting and for correcting

noisy labels during the training phase. Enhancing its resilience, CoLafier integrates two

augmented views for each sample, using their LID scores to counteract error propagation.

Direction 3: In context learning from two-level labeled datasets with in-

complete labels. Consider a dataset of social media posts for foodborne illness detection,

which operates on two levels: determining if the post indicates a foodborne illness incident

at the post level, and identifying relevant entities (e.g., food, symptom) at the word level.

The two levels are interconnected: as the overall post context provides valuable insights to

better identify relevant entities, while recognizing specific entities can offer clarity on the

broader message of the post. However, the high costs of labeling often leave datasets largely
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unlabeled. As a solution to label scarcity, LLMs offer a promising alternative. Using labeled

examples as demonstrations, LLMs can efficiently annotate unlabeled data, but it may suffer

from model hallucinations and generate low quality labels.

In this work, we introduce ICL2FID, an ICL-based labeling framework designed to

annotate datasets of social media posts regarding two-level foodborne illness detection. This

approach utilizes CoT method to guide the LLM to leverage insights from one level when

it makes prediction at another. A critical verification step in between word and post level

labeling steps eliminates incorrect entities extracted earlier, preventing them from influencing

subsequent labeling outcomes. Employing varied example retrieval strategies at each stage,

ICL2FID minimizes biases arising from repetitive exposure to identical posts and labels,

thereby effectively mitigating the risk of model hallucination. This method offers a novel

approach for labeling multi-level datasets in scenarios with limited resources .

Three tasks presented above mark a substantial stride in applying deep learning tech-

niques to data with incomplete, noisy, and multi-level labels. Extensive evaluations on real-

world datasets and comparison with state-of-the-art methods confirm their efficacy. This

dissertation offers robust frameworks and sets a foundation for future research on real-world

challenges associated with label completeness, quality, and structure in the data.
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Chapter 1

Introduction

1.1 Motivation

Deep learning models, particularly neural networks, are renowned for their ability to

decipher intricate patterns in vast amounts of data. Over the years, they have consistently

demonstrated superior performance across a wide range of machine learning tasks from

computer vision to natural language processing [1]. The traditional approach to training

these networks requires a large amount of annotated data. Traditionally, it was explicitly

or implicitly assumed that all annotations are correct [1]. However, this strict assumption

of annotations being accurate in most cases clashes with the practical challenges of real-

world data collection. Obtaining a large number of accurate labels is a daunting endeavor

and it is in fact challenging to assert if and when this holds true. This challenge is largely

attributed to high costs, limited labeling resources, and the necessity for domain-specific

expertise [2]. The ImageNet dataset, extensively employed in the Computer Vision domain,

traditionally treated its test set labels as "correct." However, a previous study uncovered a

substantial number of labeling inaccuracies [3], highlighting the intricacies and potential for

error in manual annotation processes within highly utilized datasets in artificial intelligence
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research.

We note that different types of imperfections may arise in labels assigned to data sets.

Some datasets are characterized by incomplete labels, where a significant portion pf the data

items in the data set remains unlabeled, creating informational voids. Others suffer from

noisy labels, where the provided annotations deviate from the ground truth. Such deviations

pose risks of misdirection during model training, potentially leading to degraded performance

[1]. The label noise ratio in real-world datasets is reported to range from 8.0% to 38.5% [1].

As for incomplete labels, they in fact may be more prevalent than one may expect, because

even many fully-labeled real-world datasets are in fact just subset samples of a raw and

otherwise much much larger unlabeled data set. Put differently, the vast majority of real-

world data in most domains of interest remain unlabeled. In more challenging scenarios,

datasets might even suffer from the existence of both incomplete and noisy labels, further

complicating the training process.

Figure 1.1 illustrates diverse labeling scenarios in the context of annotating data for

foodborne illness case detection [4, 5], where the objective is to ascertain whether the given

text mentions a foodborne illness case. Models trained on such data play a pivotal role in

the early detection of foodborne illnesses. This early detection is crucial for mitigating risks,

controlling outbreaks, and safeguarding public health. The top-right quadrant represents the

ideal situation where data are fully labeled and all labels are accurate (complete & clean).

The top-left quadrant illustrates a scenario where data are fully labeled, yet some labels

are inaccurate (complete & noisy). The bottom-right quadrant shows a case with partial

labeling, where it holds that the specified labels are all accurate (incomplete & clean). The

bottom-left quadrant represents the most challenging situation, where only some of the data

items in the data set are labeled and some of these labels are in fact inaccurate (incomplete

& noisy).

The concept of multi-level labeled data arises from the multifaceted nature of data and
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Figure 1.1: Label completeness and accuracy scenario for foodborne illness case detection
task.

the different depths at which insights can be extracted. Figure 1.2 illustrates the foodborne

illness detection task from two-level labeled posts. Here, a post could be classified for its

overall relevance to foodborne illness (a broader post-level label) and for the specific entities it

mentions (fine-grained word-level labels) such as symptoms or food items. A post might read

"I ate a burger and had nausea." which could be broadly labeled as a potential foodborne

illness case, with fine-grained word-level labels identifying "burger" as a food and "nausea"

as a symptom. Both of the later finer grained labels are related to the foodborne illness case.

Depending on the objective, both broad and fine-grained labels might be necessary, leading

to datasets annotated at multiple levels.

However, the challenges in acquiring such different types of labels can vary significantly

in terms of complexity and costs. For example, post-level labels are generally more straight-

forward to obtain because they require only a broad assessment of the post’s content, which is

less time-consuming and requires less specialized knowledge than identifying specific entities

within the text. In contrast, word-level annotations demand a detailed examination of the

text to accurately identify and classify each word in the text. As such, it is common to find

datasets where overall post-level labels are abundant and mostly accurate, yet word-level slot

annotations are sparse or fraught with errors [6]. Such disparities often stem from the need

for specific domain knowledge for accurate word-level labeling, compounded by budgetary

constraints that limit the extent of detailed annotation work that can be undertaken. Conse-
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quently, both levels might have incomplete or noisy labels, but one level might be relatively

more reliable than the other level. This variation in label quality and completeness across

levels emphasizes the need for adaptive strategies in model design and training to achieve

the best outcomes.

The emergence of Large Language Models (LLMs), such as GPT-3 in 2020, [7], Chat-

GPT in 2022, [8], Llama 2 in 2023[9], has captured widespread attention in recent years

These models, provided with just a natural language instruction or a few demonstration

examples, have demonstrated exceptional proficiency across a broad spectrum of tasks. This

proficiency stems from their ability to perform tasks without the need for additional train-

ing on task-specific data, a stark contrast to traditional supervised learning models which

require extensive training on labeled datasets for each new task. This capability of LLMs,

often referred to as “in-context learning” [10, 11, 12], allows LLMs to generate predictions or

complete tasks based on the context provided within the prompt, without undergoing further

parameter updates or learning processes. In-context learning is distinct because it leverages

the extensive knowledge and patterns LLMs have acquired during their initial, comprehen-

sive training phase on vast datasets. Therefore, unlike supervised learning that necessitates

task-specific model training, in-context learning exploits the pre-trained model’s existing ca-

pabilities to understand and respond to new instructions, making it a highly versatile and

efficient approach to tackling a wide array of tasks with minimal additional input.

Remarkably, ICL operates without the need for additional training or updates to the

model’s parameters, positioning it as an effective strategy in situations where computation

resources are limited. This means, that leveraging a few labeled examples, LLMs could be

instructed to annotate unlabeled data. This is exciting as it would help to bridge the huge

gap identified above between label scarcity and the need for labeled data. However, it’s

important to note that human annotators, too, are prone to errors and inconsistencies in

labeling, as evidenced by various studies [13, 14]. As LLM technology continues to evolve and

become more sophisticated, it is expected that their accuracy and reliability will improve,
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Two-Level Labeled Social Media Posts
for Foodborne Illness Case Detection

Figure 1.2: Two-level labeled social media posts for foodborne illness case detection

mitigating the issue of hallucinations. Moreover, as LLMs become more mainstream and their

deployment costs decrease, their application in extensive and labor-intensive tasks such as

label generation is likely to expand. This trend is promising for overcoming the challenges

associated with acquiring large volumes of high-quality labeled data, especially in domains

where resources are scarce. Thus, despite the current limitations, the use of LLMs in label

generation holds significant promise for the future, potentially revolutionizing the way we

approach and manage data annotation tasks as LLM technology matures.

1.1.1 Motivating Example: FACT Project

A practical example of real-world data exhibiting incomplete, noisy, and multi-level

labels is the data collected in the FACT project1. The initiative within the FACT project

aims to harness big data analytics technologies to enhance the safety of fresh produce,

exploring social media analysis for early warnings about food safety concerns.

The objective is to train a deep learning model to detect mentions of foodborne illness

incidents in social media posts, with tweets being collected to build a dataset. A successful

method would not only identify if a tweet indicates a possible foodborne illness incident

but also autonomously extract crucial entities from the tweet for aggregation into actionable
1Project link: https://www.nal.usda.gov/research-tools/food-safety-research-projects/fact-innovative-b

ig-data-analytics-technology-microbiological-risk-mitigation-assuring-fresh-produce

https://www.nal.usda.gov/research-tools/food-safety-research-projects/fact-innovative-big-data-analytics-technology-microbiological-risk-mitigation-assuring-fresh-produce
https://www.nal.usda.gov/research-tools/food-safety-research-projects/fact-innovative-big-data-analytics-technology-microbiological-risk-mitigation-assuring-fresh-produce
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trends. To accelerate this inspection process, it’s divided into three automatable tasks: (1)

determining if the tweet hints at a foodborne illness incident; (2) locating and extracting

mentions of food, symptoms, locations, and foodborne illness-related keywords from the

tweet; and (3) recognizing mentions of slots, i.e., the attributes of an incident like What,

Where, and their values pertaining to any foodborne illness incident described in the tweet [4].

These tasks are classified as Text Relevance Classification (TRC), Entity Mention Detection

(EMD), and Slot Filling (SF), respectively.

During the data collection phase, due to limited resources, most tweets remain un-

labeled, with only a small portion labeled by crowdsourced workers and an even smaller

fraction annotated by experts, resulting in an incompletely labeled dataset. During the la-

bel collection phase, annotations from 5 workers were collected for each tweet. Low-quality

labels were discarded, retaining only those tweets with at least 5 high-quality labels. The

quality of crowdsourced labels was evaluated using various aggregation methods, compar-

ing them with expert labels, which served as the ground truth. The evaluation disclosed a

quality gap between crowdsourced and expert labels, with the gap widening for fine-grained

tasks like Entity Mention Detection and Slot Filling. These tasks, necessitating a word-by-

word analysis, were found to be more demanding and challenging compared to broader-level

tasks [4]. The aforementioned challenges hint at a broader implication: classifiers trained

on datasets marred by incomplete and noisy labels are likely to underperform, showcasing

diminished generalization capabilities. This underscores the necessity for developing more

robust models that can adeptly navigate the complexities of real-world data, particularly

those requiring nuanced understanding at both the broad and fine-grained levels.

1.2 Overall Objectives

This dissertation focuses on three directions of investigation to address the challenges

posed by incomplete, noisy, and multi-level labeled datasets. These directions are 1) learning
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from two-level labeled datasets with one level having complete labels and the other having

incomplete labels, 2) learning from datasets with noisy labels, and 3) in-context learning

from two-level labeled datasets with incomplete labels.

Referring back to the four quadrants illustrated in Figure 1.1, directions 1 and 3 specif-

ically address the scenarios depicted by the bottom-right quadrant (incomplete & clean).

Direction 1 targets the case where one level of labeling is complete and the other is in-

complete, while direction 3 delves into situations where both labeling levels are incomplete,

showcasing a nuanced approach to handling incompleteness across dataset levels. The di-

rection 2 directly tackles the challenges represented by the top-left quadrant (complete &

noisy), focusing on improving label accuracy in fully labeled datasets. However, it’s note-

worthy that the bottom-left quadrant (incomplete & noisy), representing datasets with both

incomplete and noisy labels, is not directly tackled within this dissertation.

This focus reveals a gap in addressing datasets that simultaneously suffer from incom-

pleteness and noise, particularly in scenarios where this affects both levels of labeling. The

dissertation’s scope, thus, highlights areas ripe for future investigation, aiming to bridge these

gaps and enhance methodologies for dealing with the full spectrum of labeling challenges in

datasets.

1.2.1 Learning from Two-Level Labeled Datasets with One Level

Having Complete and the Other Incomplete Labels

For multi-level labeled datasets, acquiring labels at a more fine-grained level is often

more resource-intensive and challenging than at broader levels. This leads to the explo-

ration of learning from two-level labeled datasets, with one level having complete labels

and the other having incomplete labels. The core idea is to deal with datasets where

fine-grained labels, like Human Attention Maps (HAMs) in text classification, coexist with

broader sentence-level labels. HAMs provide word-level labels that explain the influence
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each word has on human predictions. However, collecting such detailed labels is much more

demanding compared to obtaining broader classification labels for the entire sentence, as it

requires a thorough examination of every word within a large dataset. The need for such

detailed analysis often collides with the practical challenges of label collection. This may

result in a dataset where each instance is associated with a classification label, and a small

proportion of these training instances also have fine-grained word-level labels. In this case,

a classifier trained on such a dataset may overemphasize the fully-labeled classification task

and perform worse on the human-like attention generation task. We term this problem ex-

plainable text classification with limited human attention supervision, and it is the particular

focus of this dissertation’s first research direction.

1.2.1.1 State-of-the-Art: Learning from Two-Level Labeled Datasets with One

Level Having Complete Labels and the Other Having Incomplete Labels

In the domain of learning with incomplete labels, two predominant methods emerge:

semi-supervised learning [15] and active learning [16]. Active learning presupposes the avail-

ability of a human expert who can be queried to acquire ground-truth labels for selected unla-

beled instances, unlike semi-supervised learning, which operates without such an assumption.

In this dissertation work, the focus is primarily cast on methods based on semi-supervised

learning.

In the realm of semi-supervised learning within multi-level labeled scenarios, a range

of methods, including pseudo-labeling and self-training, have been developed to leverage

unlabeled instances [17, 18]. Typically, these methods address scenarios with extensive

unlabeled data, indicating incomplete labeling across all levels. Our case, however, presents

the distinctive challenge of having one fully-labeled level alongside another level with limited

labels, creating an imbalance in supervised information that has yet to be addressed by the

literature.
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In text classification, Barrett et al. [19] and Zhang et al. [20, 21] have utilized human

attention maps (HAMs) for attention generation, relying on extensive word-level annotations

or eye-tracking data. These methods, while insightful, require substantial annotation efforts

and are not optimized for scenarios with limited HAMs. An efficient method capable of

training with sparse HAMs remains an underexplored area warranting further investigation.

Recent Advances and Additional References: To ensure the citations are current

and relevant, recent studies should be reviewed to update the references in this section

to include works up to 2024 that discuss advancements in semi-supervised learning, active

learning, and their applications in multi-level labeled datasets. This will not only reinforce

the dissertation’s credibility but also provide the most current insights into the challenges

and solutions in this area of research.

1.2.1.2 Challenges: Learning from Two-Level Labeled Datasets with One Level

Having Complete Labels and the Other Having Incomplete Labels

Tackling two-level labeled datasets, where one level boasts complete labels while the

other grapples with incomplete labels, poses an inherently intricate challenge. At the core

of this challenge lie two distinct tasks: the broader level task and the fine-grained level

task. Each task presents a disparate amount of labeled data — while all data entries are

accompanied by broader level labels, only a subset is furnished with fine-grained level labels.

This disparity in label availability necessitates a nuanced approach to learning from such

datasets.

A proficient solution must adeptly balance the feedback derived from each task. It is

crucial to prevent an overemphasis on the fully-labeled task, which could overshadow the

learning from the incompletely labeled task, potentially leading to a bias in the learning

process. Furthermore, the solution should judiciously leverage the available fine-grained

labels to enhance the learning process, while also effectively utilizing the broader labels to
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compensate for the lack of fine-grained labels. The inherent hierarchical relationship between

the broader and fine-grained tasks adds another layer of complexity. It requires a method that

can seamlessly integrate information across these levels, promoting a harmonious learning

process that optimally benefits from the unique information provided by each level of labeling.

1.2.2 Learning from Datasets with Noisy Labels

Obtaining high-quality labels for large volumes of data is both expensive and resource-

intensive, often necessitating domain-specific knowledge [22]. Given these challenges, many

researchers or practitioners have sought alternative labeling sources such as crowdsourcing [4]

or automatic label annotation using pre-trained models [23]. While these methods enhance

efficiency and curtail costs, they frequently compromise label quality [24]. Labels procured

through these approaches are referred to as noisy labels, as they may deviate from the

true ground-truth labels. Recent literature [1, 25] underscores that Deep Neural Networks

(DNNs), notwithstanding their resilience across myriad AI applications, remain vulnerable

to label noise. Such noisy labels can impede network performance, emphasizing the necessity

to attain commendable generalization capacity [1].

1.2.2.1 State-of-the-Art: Learning from Datasets with Noisy Labels

The prevalence of noisy labels in datasets has spurred a substantial body of research

aimed at enhancing the robustness of the learning method. Previous works addresss this

by developing noise-adaptive architectures [26, 27], introducing regularization techniques

[28, 29], and formulating improved loss functions [30, 31]. Nevertheless, these methods often

struggle with high noise ratios and intricate noise patterns [1]. Recent studies have primarily

spotlighted two techniques for training DNNs with noisy labels: sample selection and label

correction. Sample selection methods endeavor to identify potentially mislabeled samples,

minimizing their impact during training. Such samples might be discarded [32, 33], assigned
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reduced weights in the loss function [34], or considered as unlabeled, with semi-supervised

learning techniques employed [35, 36]. Conversely, label correction strategies seek to improve

the training set by identifying and amending mislabeled instances. Both soft and hard

correction approaches have been proposed [34, 23, 37]. While these methods have markedly

enhanced noise robustness, the introduction of hyperparameters in these methods can make

DNNs more vulnerable to variances in data and noise types [1].

1.2.2.2 Challenges: Learning from Datasets with Noisy Labels

Several challenges emerge when learning from noisy labels. including confirmation bias,

which arises when the model makes incorrect selection or correction decisions, thereby be-

coming biased and progressively adapting to the noise. Additionally, some methods assume

knowledge of the noise label ratio and pattern, utilizing this information to inform their

hyper-parameter settings [32, 36, 35]. However, in real-world scenarios, this information is

typically absent, making these methods less viable in practice. It is challenging to develop a

universal method that can collect sufficient clean labels to train a strong model.

1.2.3 In-Context Learning from Two-Level Labeled Datasets with

Incomplete Labels

Acquiring labels for large datasets is a difficult and expensive process. This difficulty

increases when labeling tasks need annotation on multiple levels. Take, for instance, a dataset

of social media posts aimed at detecting foodborne illness incidents, operating on two levels.

On the post level, the task entails predicting whether a post indicates a foodborne illness

incident. In contrast, on the word level, the objective is to identify mentions of slots, aka

entities (e.g., What, Where) related to a mentioned foodborne illness incident. The overall

context of a post can provide valuable insights to better identify specific relevant entities,

while recognizing specific entities can offer clarity on the broader message of the post.
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Given the high costs associated with label collection, datasets often remain largely unla-

beled. Faced with label scarcity, particularly in settings with limited computation resources,

Large Language Models (LLMs) present a viable solution. By using labeled instances in the

dataset as demonstration examples, LLMs can annotate unlabeled data, narrowing the gap

between the lack of labels and the need for comprehensive labeling. Yet, LLMs are prone to

hallucination, resulting in potentially noisy labels. Additionally, the strategy to exploit the

relationship between the two levels of labels remains unexplored.

1.2.3.1 State-of-the-Art: In-context Learning from Two-Level Labeled Datasets

with Incomplete Labels

Numerous methods have been proposed for learning from two-level labeled datasets [38].

These methods achieve remarkable performance by leveraging the relationship between the

two levels [39, 40, 41]. However, most of these works assume that both two level are fully

labeled and these methods usually require training and model parameters updates, which do

not address the issues of label completeness in resource-limited scenario. To our knowledge,

no existing studies have tackled the specific problem setting we propose.

Regarding in-context learning, some research has investigated using LLMs to label var-

ious NLP tasks [42, 43] – though not the particular task that we are focussing on. With

carefully constructed task descriptions and labeled examples, LLMs can label vast datasets

without needing training or model updates. However, of course, this does require sustained

effort on prompt engineering [44]. Further, the Chain-of-Thought (CoT) approach, which

encourages LLMs to outline their thought process before the final answer, significantly boosts

their ability to solve complex tasks [45]. Nevertheless, the specific application of LLMs for

multi-level labeling within real-world datasets, especially leveraging the interconnections of

labels across levels, remains largely uncharted territory.
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1.2.3.2 Challenges: In-context Learning from Two-Level Labeled Datasets with

Incomplete Labels

The task of learning from two-level labeled datasets is inherently challenging, requiring

methods that effectively utilize the relationship between the two tasks [38]. This complexity

is magnified in in-context learning scenarios using LLMs, which can suffer from hallucination

issues, potentially leading to noisy label generation. Utilizing incorrect labels from one level

to inform the prediction on the other level can result in compounded errors. Moreover,

learning from datasets with few labeled examples is already challenging due to the risk of

overfitting to the small labeled set. This challenge is exacerbated in ICL scenarios, where

LLMs may become biased by the demonstration examples provided. Thus, the development

of a robust strategy for selecting demonstration examples is crucial for ensuring reliable

learning outcomes.

1.3 Dissertation Tasks

In this dissertation, I tackle the following three tasks described below. A detailed

description of each task and its solution is presented in the subsequent sections. We note

that tasks 1, 2, and 3 align with the previously mentioned research directions 1, 2, and 3,

respectively.

Task 1: Explainable Text Classification with Limited Human Attention Super-

vision

In this task, we delve into a specific scenario entailing learning from two-level labeled

datasets, wherein one task is endowed with complete labels while the other possesses in-

complete labels. We are presented with a set of training documents, each tagged with a

corresponding classification label. A small portion of these training documents also bear
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fine-grained word-level Human Attention Map (HAM) labels, denoting the words a human

annotator deemed most pertinent while assigning the class label. Our objective is to en-

gineer a model capable of adeptly tackling the text classification task, whilst concurrently

generating human-like attention weights that mirror those a human would produce for the

given document.

For this task, we propose a deep learning framework named HELAS: Human-like Explanation

with Limited Attention Supervision, designed to adaptively learn attention weights focusing

on words in a manner analogous to human attention with very limited supervision. HELAS

comprises two key components: the first is an innovative attention method called the human-

like attention learner, which successfully learns attention weights that mimic human atten-

tion, adapting to different contexts; the second is a custom contextualized representation

that considers the impact of all words when making its final prediction. HELAS effectively

unifies joint learning, improving both text classification and human-like explanation tasks,

even with only minimal supervision labels for the latter. Our evaluation studies on three

real-world datasets demonstrate that HELAS outperforms state-of-the-art alternatives in

learning an accurate text classifier and generating human-like attention, even when as little

as 2% of the data contain HAM labels. This work is published at IEEE Big Data 2021

[46].

Task 2: Classification with Noisy Labels

This task pivots on devising a method to navigate the classification task amidst the

quagmire of noisy labeled training data. We are given a set of training data, each item

accompanied by a noisy classification label, with no insight into the accuracy of each label.

Our aim is to cultivate a classification model that stands resilient to label noise and adeptly

executes the classification task.

For this task, we introduce CoLafier, a cutting-edge framework tailored for learning
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with noisy labels. It is built around two pivotal modules: the LID-based noisy label dis-

criminator (LID-dis) and the LID-guided label generator (LID-gen). The LID-dis module

processes the features and label of a training sample to create a refined representation. This

process unveils that the Local Intrinsic Dimensionality (LID) score is adept at distinguishing

between correct and incorrect labels. Capitalizing on this finding, CoLafier employs the LID

scores from LID-dis to assign weights in our specialized loss function, guiding both LID-dis

and LID-gen during training. These modules work in tandem to calibrate label updates,

mitigating error propagation. We incorporate dual augmented views for each instance, with

their respective LID scores steering the weighting and label correction strategies. Upon com-

pletion of training, LID-gen stands equipped for deployment as the classifier. Evaluations

across multiple noise settings confirm that CoLafier delivers a significant boost in prediction

accuracy, on average outperforming SOTA techniques. This work is published at SDM

2024 [47].

Task 3: LLM-based Two-Level Foodborne Illness Detection Label Annotation

with Limited Labeled Samples

In this task, we are provided with a dataset of social media posts [4] aimed at detecting

foodborne illness incidents, which operates on two levels. At the post level, the goal is to

predict whether a post indicates a foodborne illness incident. In contrast, at the word level,

the objective is to identify mentions of slots, aka entities (e.g., Food, Symptom) related to

the foodborne illness incident. Most of the posts in the dataset are unlabeled on both levels,

with a small portion of posts annotated with noisy labels for the two levels. Our goal is to

develop an in-context learning method that can assign two-level labels for unlabeled posts

in this dataset in particular. It is expected that the proposed methods show some promise,

and thus this could contribute to tools equally applicable to alternate domains of interest.

For this task, we propose leveraging Large Language Models (LLMs) as annotators
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by designing an LLM-based framework that produces both word-level and post-level labels

for each unlabeled post. This solution is composed of three stages. Initially, an LLM is

prompted to generate word-level labels, utilizing the CoT method to guide the model to first

assess whether the overall context suggests a foodborne illness incident and subsequently to

identify which words constitute relevant elements. In the second stage, the LLM evaluates

the accuracy of the relevant entities extracted in the first stage, preventing spurious relevant

entities from compromising the post-level prediction in the final stage. Lastly, the LLM uses

the results from the word-level labeling as a reasoning basis for determining the post-level

label. To minimize potential biases introduced by demonstration examples, different sets of

examples are employed at each labeling stage. Our method’s efficacy, particularly in resource-

constrained environments, has been rigorously evaluated, revealing a significant improvement

in labeling accuracy over existing state-of-the-art (SOTA) supervised learning approaches

that typically rely on extensive parameter updates and computational resources. Moreover,

our method achieves labeling quality comparable to that obtained through crowdsourcing but

at a fraction of the cost. This comparison elucidates the practical advantages of our LLM-

based approach, particularly its efficiency and cost-effectiveness relative to both traditional

supervised learning models and conventional crowdsourced annotation methods. This work

will be submitted to CIKM 2024.

1.4 Organization of this Dissertation

The rest of this dissertation document is structured as follows:

• Chapter 2: Learning from Two-Level Labeled Datasets with One Level Having Com-

plete Labels and the Other Having Incomplete Labels.

This chapter covers Task 1.

• Chapter 3: Learning from Datasets with Noisy Labels.
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This chapter covers Task 2.

• Chapter 4: In-context Learning from Two-Level Labeled Datasets with Incomplete

Labels.

This Chapter covers Task 3.

• Chapter 5: Conclusion.

This chapter covers a summary of the key contributions of this dissertation is provided,

along with promising directions for future work.

• Chapter 6: List of Publications.

This chapter covers a list of publications authored and co-authored during my PhD

studies.



Chapter 2

Explainable Text Classification with

Limited Human Attention Supervision

This research work was published at IEEE BigData 2021[46], with me serving as the prin-

cipal author in collaboration with Cansu Sen, Jidapa Thadajarassiri, Thomas Hartvigsen,

Professor Xiangnan Kong, and Professor Elke Rundensteiner. I was responsible for designing

the model for the problem of explainable text classification under limited human attention

supervision and conducing experiments. What follows is an abridged version of this work.

2.1 Motivation

Text classification is a crucial text mining task with broad applications including fake

news detection [48], clinical diagnosis [49], and sentiment analysis [50]. With the availability

of massive training corpora, several modern approaches [51, 52, 53] achieve impressive perfor-

mance. Yet they are remain largely inapplicable in settings where explanations are required

to support a decision. For example, a doctor must know on what information a diagnostic

model relies before trusting its predictions. Attention-based models [54, 55, 56] can be used

18
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Restaurant Reviews Sentiment Classification Training Dataset

Explainable Text Classification Problem

Legend

food was not goodThe

This everis the best
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Figure 2.1: Explainable text classification with limited human attention supervision. Given
a corpus of documents, each with a document-level label for classification task while only a
few with word-level labels (human attention maps) for supervising attention, the dual goal
is to learn a model that classifies text documents accurately and generates human-like word
attention maps.

to acquire such explanations by learning to assign heavy weights to words that have a high

impact on a model’s prediction. Recently, there is growing evidence that attention weights

that look as if they were generated by humans lead to both better explanations and some-

times even improved classification [57, 58]. However, attention generated by conventional

attention approaches are dissimilar to human rationales [59, 58]. Classic attention contradicts
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the ultimate goal of producing explainable models that allow human users to understand a

model’s rationale for a given prediction. Recent works [60, 61, 62, 63, 20, 19] have begun

to overcome this hurdle, enhancing explanations by encouraging them to be human-like, or

resemble rationales provided by humans. This has been achieved by collecting additional

attention labels and explicitly supervising the attention mechanism.

Problem Definition. In this work, we are the first to study the problem of explainable

text classification with limited human attention supervision. This addresses the real-world

case where access to HAMs is severely limited. As illustrated in Figure 2.1, assume we are

given a set of training documents, each with one associated classification label. A very small

proportion of these training documents also have fine-grained word-level labels (HAMs),

indicating which words a human annotator found to be most relevant as they assigned the

class label. Our goal is to train a model that simultaneously solves the text classification

task accurately while predicting human-like attention weights that are similar to those that

would be generated by a human for the given document.

Challenges. Text classification with limited human attention supervision is challenging

for the following reasons.

• Sensitivity of Attention to Changing Contexts. A word with high human attention

in one document does not necessarily have high human attention in the other document.

This implies that the attention weight for a word relies heavily on the context in which

it appears. A successful attention method must effectively capture this reliance between

context and human-like attention.

• Conflict Between Human-Like Attention Generation and Text Classification. Our

problem requires a model to assign specialized weights to individual words. However, every

word contributes to the classification task. Therefore, unsupervised attention weights are

often more distributed across a sentence than a HAM. A successful model must balance

between the two contradictory objectives of human-likeness and classification accuracy.
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• Varying Levels of Supervision. This problem has two tasks: classification and human-

like attention generation. However, each of the two tasks has a different amount of labeled

data — all data have classification labels, only some have human attention maps. A good

solution must balance the feedback given from each task without overemphasizing the fully-

labeled task.

Proposed Method. To handle these challenges, we propose the deep learning architec-

ture, HELAS: Human-like Explanation with Limited Attention Supervision, which produces

human-like attention values during text classification, even when very few human attention

labels are available. HELAS processes input text in three phases : (1) HELAS encodes input

text through a text representation learner into both dense vectors for each word and one vec-

tor for the whole document. This text representation learner is highly modular and can learn

representations using many recent text models such as RNNs [64, 65] or BERT [52]. (2) The

human-like attention learner in HELAS learns human-like attention weights for each word by

both considering its individual impact on the classification task and by carefully incorporat-

ing its contextual information. This allows the learned attention mechanism to be adaptive

to context, similar to a human annotator. (3) The contextualized representation collates

the contextualized information learned according to the human-like attention learner with

the overall text representation to consider both sources or information and perform the final

classification. Thus, our approach succeeds to capture the unique contribution of each word

in a given document and produce both human-like attention and accurate classifications.

HELAS is optimized using a joint loss function for the classification and human-like

attention-learning tasks. We introduce a hyper-parameter into the loss function for striking

a balance between classification and attention supervision, resulting in one unified training

objective. This newly defined loss handles the varying levels of supervision for both classifi-

cation and attention supervision and thus allows HELAS to deliver accurate classifications

and human-like attention weights simultaneously.
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Contributions. Our contributions are as follows:

• We define the open problem of explainable text classification with limited human

attention supervision, which is to develop a human-like explainable classifier when few HAMs

are available.

• We propose the first solution to this problem, HELAS, which contains two key com-

ponents: (1) a novel attention method, called human-like attention learner, that successfully

learns human-like attention weights, adapting to different contexts, and (2) a custom con-

textualized representation that considers the impact of all words to make its final prediction.

• We propose a joint loss function for HELAS that balances the limited attention su-

pervision and fully-supervised classification supervision, encouraging the model to generate

more human-like attention values – even with very few HAMs.

• We demonstrate that even when HAMs are available for as little as 2% of the training

data, HELAS still succeeds to generate human-like attention, achieving up to 22% increase in

similarity compared to four state-of-the-art methods. HELAS also gets better performance

on the classification task achieving significant (up to 19%) gains in accuracy.

2.2 Related Works

Supervised Attention Models. Attention supervision is used for NLP problems. In

[66, 67], conventional alignment models are used to guide the attention module for language

translation. [62] apply supervised attention method for event detection, namely, their model

focuses on event information on both the word- and sentence-level. [63] introduce supervised

attention for improving the accuracy of the semantic event recognition; namely, by deploying

semantic word lists and dependency parsing trees [68] to guide the attention components.

[19] propose a method to use estimated human attention derived from eye-tracking corpora

to regularize attention functions for sequence classification tasks. While these works show
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supervised attention can improve accuracy, the forms of guidance adopted remain limited –

none of the methods mentioned above get attention guidance via word-level human attention

maps collected for the classification task.

[20] propose a model with an attention mechanism for text classification that jointly

exploits document classification labels and sentence-level annotation labels. They assume

that annotators explicitly mark sentences that support their overall document categorization

for each document in the corpus. However, collecting fine-grained sentence-level or word-level

annotation labels for all instances in a dataset can be costly and time-consuming. Moreover,

in [20], training with each level of labels is split into two steps. It is time-consuming and

sophisticated to train their model. Hence, it is worthy of exploring a method that can be

trained efficiently with limited access to HAMs.

Model Explainability. Deep-learning models suffer from a lack of explainability, de-

spite the need for explainable models in many domain settings. Thus, several studies in recent

years attempt to make neural network models more explainable. Rationale-based methods

are examples of this for NLP [69, 70]. In these works, the goal is to train a classification

model and produce binary “rationales" to serve as human-like explanations of model predic-

tions. However, while their direction is promising, their classification performance remains

a drawback compared to recent attention-based approaches [58]. Also, these rationale-based

architectures make classifications based on the selected “rationales”, not the full text [69, 70].

So the information in these non-rationale words is missing during prediction.

Recent work in deep learning instead has begun to use attention mechanisms to attempt

to bring interpretability to model predictions [54, 56, 55]. However, these works assess the

produced attention maps solely qualitatively by visualizing a few hand-selected instances.

[58] approaches attention explainability from a human-centered perspective. They investigate

the similarity between human attention and machine attention and interpret such similarity

as a measurement of the model explainability. It indicates that it is intuitive to humans as
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it matches which words humans would rely on when making decisions. [58] makes a novel

human attention map resource available to the community. Inspired by their approach, we

now leverage human attention to explicitly train a model to concurrently produce the overall

task prediction as well as the human-like explanations with the power of modern attention

mechanisms.

2.3 Methodology

2.3.1 Problem Definition

In this paper, we study the problem of explainable text classification with limited human

attention supervision. Given a set of N documents I = {D1, . . . ,DN}, each document Di

consists of T words Di = [wi
1, . . . , w

i
T ], and a set of class labels yi = [yi1, . . . , y

i
K ], where K

is the cardinality of yi, yik ∈ {0, 1} and
∑K

k=1 y
i
k = 1. The document classification task is to

parameterize a function fθ(·) that maps Di → yi, generalizing to unseen instances.

A Human Attention Map (HAM) is a vector of length T , [α1, . . . , αT ], where each entry

αt indicates the degree of attention that a human pays to a corresponding word wt in a

document. HAM is a binary map collected from humans, i.e., αt = 1 indicates that the

corresponding word receives high attention while 0 shows low attention. A Machine Attention

Map (MAM = [α̂1, . . . , α̂T ]) is a human-like attention map predicted by a neural network

model, where α̂i ∈ [0, 1] indicates the probability of the corresponding word that would

receive high attention from humans.

For each document Di, we are given a class label yi. However, only a limited amount

of documents have HAMs. One component of fθ(·) is an attention mechanism that aims to

output MAMs that are similar to HAMs. Our task is to jointly learn the function f(θ) while

minimizing the difference between HAMi and MAMi for all documents Di, the latter task
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is named human-like attention generation. If conditioned perfectly, fθ(Di) → (ŷi,MAM i)

such that ŷi = yi and MAMi = HAMi.

For readability, we henceforth describe our method for a single document Di, dropping

i when it is unambiguous.

2.3.2 Proposed Method: HELAS

Our proposed deep learning architecture, HELAS: Human-like Explanation with Limited

Attention Supervision, is depicted in Figure 2.2. HELAS consists of three major components:

(1) The text representation learner encodes raw text to their numerical representations. This

component can be any sequential deep learning architecture, such as RNNs [64, 65] or BERT

[52]. The purpose of this layer is to encode the input document into a document representa-

tion and a sequence of word representations. (2) The human-like attention learner generates

a MAM aimed to be similar to the given HAM. The attention mechanism determines the

human-like attention weight for each word by the interrelation between word and sentence

representations. (3) The contextualized representation utilizes the MAM from the human-like

attention learner to enhance the context vector to estimate the class label, y, of a document.

Text Representations Learning. We focus our study on the two popular sequence mod-

eling including RNNs [64, 65] and BERT [52] while HELAS can be, in practice, paired with

any sequence-representation learning architectures.

• HELAS-RNN. One common and powerful architecture for document classification

is an RNN combined with an attention mechanism [54, 71]. Following this architecture,

the HELAS-RNN model first utilizes an encoding layer to map words into real-valued vector

representations where semantically-similar words are mapped close to one another. We use a

pre-trained word embedding set ϕ for this mapping: xt = ϕwt. HELAS-RNN then employs a

recurrent layer to embed vector representations of words into hidden states, processing words
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once at a time. In our experiments, we use both LSTM [64] and GRU [65] memory cells.

Assuming that Γ is the recurrence function (e.g., LSTM or GRU) and xt is the embedded

t-th word from the document D, HELAS-RNN is modeled as:

et = Γ(xt, et−1) (2.3.1)

where et is the hidden state. The final hidden state eT is used as the document repre-

sentation, defined as r = eT .

• HELAS-BERT. HELAS-BERT first employs a transformer architecture [51] to en-

code words, initialized with a pre-trained BERT model [52]. Following the standard practice

in BERT-based architectures, the first word of the input is the special token ‘[CLS]’. ‘[SEP]’

token is added to the end of the input sequence to denote the end. ‘[PAD]’ token is used

to pad the sequence in case the input sequence is shorter than the maximum input length

supported by the BERT model. HELAS-BERT generates two outputs. First is a sequence of

learned word representations [e1, ...eT ] for each input word. Second is a vector representation

r for the whole input document. This vector r corresponds to the output of the ‘[CLS]’ token

further processed by a linear layer and a tanh activation function.

[e1, ...eT ], r = BERT([w1, ...wT ]) (2.3.2)

Human-Like Attention Generation. The goal is to generate attention scores to be

as close as possible to human attention. This way, attention scores can be interpreted as

human-like explanations for the final classification decision.

We hypothesize that the importance of each word relies heavily on its belonging docu-

ment. Therefore, HELAS is designed to learn specialized attention function that is adaptable
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Figure 2.2: Overall architecture of HELAS.

for different training corpus. The human-like attention learner learns MAMs as follows:

st = tanh(Weet + be) (2.3.3)

α̃t = s⊤t r (2.3.4)

α̂t = sigmoid(α̃t) (2.3.5)

where We and be are weight matrix and bias term in the linear layer, which can be optimized

during the training time. Here, we first encode new word representations st from et. st serves

as a specialized representation of the importance of wt, while et is still a general representation

of the information contained in wt. Then the raw attention score α̃ is determined by such

st and the document representation r in order to induce MAMs to capture more flexible

relation between et and r. MAM = [α̂1, . . . , α̂T ] is then utilized by the subsequent layers of

the HELAS. To this end, we take the binary cross entropy as the general loss of the attention
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at the word level.

Ja(HAM,MAM) = −(
T∑
t=1

(αt log α̂t + (1− αt) log (1− α̂t))). (2.3.6)

This objective optimizes the model to assign human-like attention scores to every word. By

providing word-level supervision to the document classification model, we are able to teach

it to focus on the most relevant areas selected by humans and thereby improve the quality

of document representations along with the overall performance.

It is worth noting that special tokens, such as ‘[CLS]’, ‘[SEP]’ and ‘[PAD]’, are invisible

to human annotators (if the text representation learner is BERT). Thus, their corresponding

human attention weights are always set to zero. Also, the tokenizer used by the BERT model

is WordPiece [72], which sometimes splits a word into several words. These generated words

are then assigned with the same human attention score as the original word.

Document Classification. Using the MAMs, the learned word representations et and the

document representation r generated by the text representation learner, the contextualized

representation c is computed as follows:

c = tanh([r;
∑
t

α̂tet]). (2.3.7)

Unlike the previous works [19, 20] which use
∑

t α̂tet as the final text representation for

classification, we concatenate document representation r and weighed sum of word represen-

tations to model a dense embedding for the document. For a given HAM, when α = 0, it

does not indicate that the corresponding word was completely ignored by humans. During

training, the values of some α̂s could be very close to 0. Since r contains basic information

of the whole document, the contextualized representation will consider every word when

performing classification, even if some words’ associated α̂ ≈ 0. Those words with higher α̂
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values remain a higher impact on final prediction results.

The output layer uses c as follows:

d = Dropout(Wcc+ bc) (2.3.8)

p̂(yk = 1|D) =
exp(W

(k)
d d+ bd)∑K

k=1 exp(W
(k)
d d+ bd)

(2.3.9)

To further fuse r and
∑

t α̂tet together and reduce the risk of overfitting, we apply a linear

transformation followed by a dropout layer in Equation 2.3.8. Here, Wc, bc are weight matrix

and bias term in the linear layer. After dropout, Equation 2.3.9 assigns a probability to each

possible class, where Wd, bd are weight matrix and bias term in the softmax function. We use

the cross-entropy loss as the document classification objective function where p̂(yk = 1|D)

is the prediction and y the ground truth label.

Jc(y, ŷ) = −
K∑
k=1

yk log (p̂(yk = 1|D)). (2.3.10)

Joint Training of HELAS. In HELAS, the human-like attention generation task and

classification task are jointly trained. Thus, we define a joint loss function in the training

process upon the losses specified for different subtasks as follows:

J(θ) =
∑

(Jc(y, ŷ) + λJa(HAM,MAM)). (2.3.11)

where θ denotes, as a whole, the parameters used in our model, and λ is the hyper-parameter

for striking a balance between document classification supervision and attention supervision.

When only a few documents contain HAMs, the tunable parameter λ can be optimized to

emphasize the small corresponding supervision signals, then both the classification and the

human-like explanation goals can be achieved evenly.

During the training process, if there is no HAM for the input text, we only minimize
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Equation 2.3.10. When both HAMs and classification labels are available, we minimize

Equation 2.3.11.

2.4 Experiments

We evaluate our proposed method on four publicly available datasets that are compared

against four state-of-the-art methods.

2.4.1 Datasets

The four datasets used in our experiments contain document labels for all instances

while only a few of them have HAMs. All datasets contain roughly balanced examples

between positive and negative classes. The proportions of positive examples are between

45% to 68%. It should be noted that our work can also be applied to multi-class datasets.

• Yelp-HAT [58]. This dataset provides human attention maps for a collection of 1000

reviews from the Yelp dataset. Each review comes with a human attention map and a class

label indicating whether the review is positive or negative. All characters are lowercase,

punctuation is removed. Reviews are 50-75 words long. 70% of reviews are used for training

with the remaining 30% for testing.

The dataset contains annotations from multiple humans for each of the reviews because

each annotator may have different opinions on how indicative words are for review sentiments.

To obtain reliable representations of human attention, we apply Consensus Attention Maps

as being used in [58], by extracting HAMs from all annotators’ agreement that are then used

to evaluate a sentiment classification task.

• N2C2. N2C2 NLP Research datasets contain unstructured notes from the Research

Patient Data Repository at Partners Healthcare1. From this clinical note repository, we use
1https://n2c2.dbmi.hms.harvard.edu

https://n2c2.dbmi.hms.harvard.edu


PhD Dissertation: Dongyu Zhang 31

the 2014 challenge data, consisting of a set of medical documents that track the progression

of heart disease in diabetic patients. Each clinical note is assigned to an expert in order to

indicate the presence and progression of a disease (diabetes or heart disease), associated risk

factors, and the time they were present in the patient’s medical history.

In this dataset, we focus on predicting heart disease. For each patient in the dataset, if

there is a clinical note with a heart disease annotation (indicated by CAD tag), we assign all

notes belonging to this patient to the positive class. Patients with no heart disease mention

are assigned to the negative class. Then we train a model that inputs every individual clinical

note and predicts whether this note belongs to a heart-disease patient. N2C2 dataset contains

520 clinical notes in the training set and 511 clinical notes for the testing set. A series of

notes from the same patient is assigned into either the training or testing set.

We use all heart disease-related words, as outlined by the annotation guidelines of 2014

Heart Disease Risk Factors Challenge of n2c2 NLP Research Data Sets2, to create human

attention maps. These include remarks of patients having heart disease (e.g., "coronary

artery disease") or indirect mentions (e.g., “unstable angina," “PLAVIX" - a blood thinner

used to prevent heart attack).

• Movie Reviews [73]. Each review comes with a positive/ negative sentiment label

and human annotation on word-level. Due to the length constraint of our model, we used

the first 200 words as text input. Reviews in which the first 200 words are all labeled 0 are

dropped. After preprocessing, there are 1,241 reviews in the training set and 320 reviews in

the testing set.

• Standard Sentiment Treebank (SST) [74]. This dataset contains 9,545 sentences

in the training set and 2,310 sentences in the testing set. Each sentence comes with a binary

classification label (positive or negative). The original data do not contain human atten-

tion annotation. We randomly selected 400 sentences from the dataset (200 from training
2https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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split and 200 from testing split, positive/negative sentences ratio 1:1). Then we asked four

researchers in our groups to annotate words that are indicative of the review sentiment in

each sentence.

2.4.2 Metrics

The following two metrics are used for evaluation:

Behavioral Similarity [58]. To evaluate the explainable nature of each method, we

use the Behavioral Similarity metric proposed in [58]. This metric measures the similarity

between human and machine attention maps via the Area Under the ROC Curve:

B(HAM,MAM) =
1

|D|
∑
i

AUC(HAMi,MAMi) (2.4.1)

where |D| is the number of documents in dataset D. Behavioral similarity ranges between 0

and 1.

Accuracy. We use standard classification accuracy to measure the sequence classifica-

tion performance.

2.4.3 Implementation Details

We implement the text representation learners as LSTM/GRU with 128-dimensional

hidden states and BERT [52]. The learning rates are 1e-3 and 2e-5 for LSTM/GRU and

BERT, respectively. The LSTM/GRU model is trained for 40 epochs, while the BERT model

is trained for 20 epochs. All three models are set the dropout rate at 0.2 and optimized using

Adam [75]. We did a hyperparameter search for λ in the joint loss function. The best λ for

LSTM model is 20, for GRU is 30, and for BERT is 4. All experiments are implemented on

PyTorch [76] and run on a Tesla V100 GPU.
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Table 2.1: Performance of three text representation learners LSTM, GRU, and BERT on
three tasks of Yelp-HAT Sentiment Classification, N2C2 Heart Disease Prediction, and Movie
Reviews Sentiment Classification, with 2% of training data having HAMs. Metrics: (1) Be-
havioral similarity for human-like attention generation task, and (2) Accuracy for classifica-
tion task.

Dataset Methods LSTM GRU BERT
Behave Sim. Accuracy Behave Sim. Accuracy Behave Sim. Accuracy

Yelp-HAT

Limited Supervised RA .62 ± .03 .56 ± .04 .72 ± .01 .57 ± .03 .40 ± .01 .77 ± .03
Self-labeling RA .75 ± .01 .88 ± .02 .79 ± .01 .89 ± .01 .59 ± .06 .94 ± .01
External Attention SCHA .75 ± .07 .65 ± .05 .82 ± .00 .89 ± .01 .76 ± .03 .95 ± .00
Joint-learning SCHA .57 ± .01 .67 ± .06 .57 ± .02 .89 ± .02 .57 ± .03 .95 ± .01
HELAS (ours) .84 ± .00 .92 ± .01 .84 ± .00 .92 ± .00 .86 ± .01 .96 ± .00

N2C2

Limited Supervised RA .90 ± .01 .62 ± .05 .91 ± .00 .72 ± .01 .48 ± .05 .69 ± .01
Self-labeling RA .92 ± .00 .76 ± .00 .91 ± .01 .76 ± .00 .68 ± .06 .77 ± .00
External Attention SCHA .56 ± .02 .76 ± .00 .62 ± .02 .76 ± .00 .46 ± .05 .76 ± .00
Joint-learning SCHA .52 ± .06 .68 ± .00 .70 ± .07 .76 ± .00 .49 ± .05 .76 ± .00
HELAS (ours) .93 ± .00 .78 ± .00 .92 ± .00 .77 ± .00 .73 ± .05 .78 ± .01

Movie Reviews

Limited Supervised RA .54 ± .01 .54 ± .00 .56 ± .03 .54 ± .00 .42 ± .01 .58 ± .03
Self-labeling RA .53 ± .02 .58 ± .04 .54 ± .02 .63 ± .06 .56 ± .03 .83 ± .02
External Attention SCHA .61 ± .02 .54 ± .00 .61 ± .01 .54 ± .00 .58 ± .01 .86 ± .01
Joint-learning SCHA .50 ± .02 .54 ± .00 .46 ± .01 .54 ± .00 .58 ± .02 .86 ± .00
HELAS (ours) .69 ± .01 .77 ± .00 .69 ± .02 .76 ± .01 .80 ± .01 .87 ± .01

SST

Limited Supervised RA .81 ± .00 .66 ± .00 .88 ± .02 .68 ± .01 .82 ± .06 .78 ± .01
Self-labeling RA .84 ± .02 .71 ± .01 .86 ± .01 .72 ± .00 .96 ± .00 .87 ± .00
External Attention SCHA .89 ± .00 .54 ± .00 .89 ± .00 .54 ± .00 .84 ± .04 .87 ± .00
Joint-learning SCHA .50 ± .00 .54 ± .00 .50 ± .00 .54 ± .00 .47 ± .06 .87 ± .00
HELAS (ours) .91 ± .00 .77 ± .00 .91 ± .00 .77 ± .00 .97 ± .00 .87 ± .00

For Yelp-HAT dataset, we did a random train-test split every time. For N2C2, Movie

Review, and SST datasets, we used the defined train-test splits every time. For Yelp-HAT,

N2C2, and Movie Review datasets, the training data with and without HAMs are randomly

assigned every time. We use the pre-trained BERT-base-uncased model from the “Trans-

formers" library3. [77]

For each experiment, we save the model with the highest accuracy during training and

report the average evaluation results of each model from 5 replications that are initialized

randomly. When we train a model with LSTM or GRU as the text representation learner,

words are embedded using 100-dimensional GloVe [78] for Yelp-HAT and Movie Reviews.

For N2C2 dataset, we use the pre-trained embeddings from BioMed [79]. When the text
3https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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(a) Yelp-HAT dataset with text representation learners: LSTM, GRU, and BERT
shown on columns 1, 2 and 3, respectively.
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(b) N2C2 dataset with text representation learners: LSTM, GRU, and BERT shown
on columns 1, 2 and 3, respectively.
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(c) Movie Reviews dataset with text representation learners: LSTM, GRU, and
BERT shown on columns 1, 2 and 3, respectively.

Figure 2.3: Compared performance on three datasets: Yelp, N2C2, and Movie Reviews. For
each dataset, we experiment with three different text representation learner LSTM, GRU,
and BERT. We vary the proportions of available HAMs in the training dataset as shown on
the x-axis, ranging from 2%, 4%, 6%, and 8%. Metrics: (1) Behavioral similarity for human-
like attention generation task, and (2) Accuracy for classification task are both plotted.

representation learner is BERT, we use the WordPiece embedding [72] provided by BERT

model for all three datasets. All code and further training settings are publicly available4.
4https://github.com/zdy93/HELAS

https://github.com/zdy93/HELAS
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2.4.4 Experimental Results

We first evaluate HELAS’s capacity to learn from very limited levels of HAMs, specifi-

cally focusing on the case where only 2% of training data have HAMs. As always, the entire

training dataset still has classification labels. In this experiment, we measure the behavioral

similarity and the accuracy of all compared methods on the Yelp-HAT, N2C2, and Movie

Reviews dataset, randomly down-sampling the HAM annotations to 2%.

Our results are shown in Table 2.1, where we first observe that our HELAS models

achieve superior behavioral similarity and accuracy compared to all baseline models.

For the Yelp-HAT sentiment classification task, all HELAS models achieve significant

gains in behavioral similarity (up to 9%) compared to the baseline models. HELAS with

LSTM achieves the most substantial improvement in accuracy by 4%. Great gains in behav-

ioral similarity indicate that the human-like attention learner in HELAS models can better

mimic the relation between context and human-like attention even with a limited amount of

word-level labels more. The HELAS models show improvement in the classification accuracy

for all three core sequence algorithms, with HELAS-BERT achieving the least gain. This

is likely because the HELAS-BERT model is pre-trained on a large text corpus, whereas

HELAS-LSTM and HELAS-GRU models are being trained from scratch on a small dataset.

This causes these baseline BERT models to achieve an already high accuracy, which is chal-

lenging to improve upon.

For the N2C2 heart disease prediction task and movie reviews sentiment classification

task, we observe similar trends as for the Yelp-HAT sentiment classification task. We observe

the largest gains in the classification accuracy for HELAS-LSTM and HELAS-GRU models

compared to HELAS-BERT over the baseline methods. Improvement in behavioral similarity

is significant (up to 22%) for all core algorithms.

For the SST sentiment classification task, the results show again that our method out-
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performs the other alternative methods on the behavior similarity. Both HELAS-LSTM and

HELAS-GRU methods shown improvement in behavioral similarity by 2% and accuracy by

around 5-6%. Most methods benefit from rich discriminative signals on this task and reach

comparable performance when pairing with the BERT model.

Further results on other percentages of HAM availability are shown in Figure 2.3. Be-

cause we only labeled 400 sentences in the SST dataset, we did not conduct experiments on

other percentages of HAM availability for the SST sentiment classification task. We observe

that our HELAS models keep outperforming state-of-the-arts baselines across three tasks as

the HAM proportion increases from 2% to 8%. Note that External Attention SCHA. utilizes

an external source of HAMs and has no access to HAMs in classification task datasets, so

its performance remains unchanged as HAM proportion increases.

2.5 Conclusion

For this task, we define the open problem of explainable text classification with limited

human attention supervision, with the aim to support the real-world setting in that hu-

man attention maps (HAMs) are often scarce. We propose the first solution to this problem,

named HELAS: Human-like Explanation with Limited Attention Supervision. Our proposed

method contains two key components: a human-like attention learner that successfully learns

human-like attention weights conditioned on context information, and a carefully designed

contextualized representation that considers the contribution from all words to classify the

document into a final class. Our specially-designed joint loss function balances the supervi-

sion signals from both the human-like attention generation and document classification tasks

simultaneously, despite them having drastically different numbers of labels across training

instances.

Our evaluation studies on three real-world datasets demonstrate that HELAS outper-
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forms state-of-the-art alternatives on both learning an accurate text classifier and generating

human-like attention, even when as little as 2% of the data contain HAMs. This result is

consistent across different text representation learners from LSTM, GRU, to BERT.



Chapter 3

Classification with Noisy Labels

This work is published in SDM 2024, with me serving as the lead author, alongside

Ruofan Hu and Professor Elke Rundensteiner. My contributions include the development of

the solution framework and the execution of experiments. Below is an abridged version of

this work.

3.1 Motivation

Deep neural networks (DNNs) have achieved remarkable success in a wide range of

machine learning tasks [49, 46, 80]. Their training typically requires extensive, accurately

labeled data. However, acquiring such labels is both costly and labor-intensive [1, 81, 82].

To circumvent these challenges, researchers and practitioners increasingly turn to non-expert

labeling sources, such as crowd-sourcing [4] or automated annotation by pre-trained models

[23]. Although these methods enhance efficiency and reduce costs, they frequently compro-

mise label accuracy [4]. The resultant ’noisy labels’ may inaccurately reflect the true data

labels. Studies show that despite their robustness in AI applications, DNNs are susceptible

to the detrimental effects of such label noise, which risks impeding their performance and

38
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also generalization ability [25, 1].

State-of-the-Art. Recent studies on learning with noisy labels (LNL) reveal that

Deep Neural Networks (DNNs) exhibit interesting memorization behavior [25, 83]. Namely,

DNNs tend to first learn simple and general patterns, and only gradually begin to learn

more complex patterns, such as data with noisy labels. Many methods thus leverage signals

from the early training stage [35], such as loss or confidence scores, to identify potentially

incorrect labels. For label correction, the identified faulty labels are either dropped, assigned

with a reduced importance score, or replaced with generated pseudo labels [32, 36, 84].

However, these methods can suffer from accumulated errors caused by incorrect selection

or miscorrection - with the later further negatively affecting the representation learning and

leading to potential overfitting to noisy patterns [1, 85]. Worse yet, most methods require

prior knowledge about the noise label ratio or the specific pattern of the noisy labels [32, 35].

In real-world scenarios, this information is typically elusive, making it difficult to implement

these methods.

Local Intrinsic Dimensionality (LID), a measure of the intrinsic dimensionality of data

subspaces [86], can be leveraged for training DNNs on noisy labels. Initially, LID decreases

as the DNN models the low-dimensional structures inherent in the data. Subsequently, LID

increases, indicating the model’s shift towards overfitting the noisy label. Another study

[87] applied LID to identify adversarial examples in DNNs, which typically increase the local

subspace’s dimensionality. These findings suggest LID’s sensitivity to noise either from input

features or labels. Nonetheless, previous research has utilized LID as a general indicator for

the training stages or for detecting feature noise. While a promising direction for research,

applying LID for detecting mislabeled samples has not been explored before.

Problem Definition. In this study, we propose a method for solving classification

with noisy labeled training data. Given a set of training set with each item labeled with one

noisy classification label, our goal is to train a robust classification model that solves the
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classification task accurately without any knowledge about the quality or correctness of the

given labels.

Challenges. Classification with noisy labeled training data is challenging for the fol-

lowing reasons:

• Lack of knowledge about noise ratio and noise pattern. Without knowledge about the

noise ratio and noise pattern of the given dataset, it is challenging to develop a universal

method that can collect sufficient clean labels to train a strong model.

• Compounding errors in the training procedure. Incorrect selection or correction errors

made early in the learning process can compound, leading to even larger errors as the model

continues to be trained. This can result in a model that is far off from the desired outcome.

Proposed Method. In response to these challenges, we conduct an empirical study

to evaluate the effectiveness of the Local Intrinsic Dimensionality (LID) score as a potential

indicator for mislabeled samples. We design a specialized classifier, namely, LID-based noisy

label discriminator (LID-dis). LID-dis processes both a sample’s features and label to predict

the label. Notably, its intermediate layer yields an enhanced representation encompassing

both feature and label information. Our uniquely crafted training scheme for LID-dis reveals

that the LID score of this representation can effectively differentiate between correctly and

incorrectly labeled samples. This differentiation is consistent across various noise conditions.

To complement LID-dis, we introduce the LID-guided label generator (LID-gen), a reg-

ular classification model that operates solely on the data’s features - not requiring access

to the label. LID-dis and LID-gen together as two subnets form our proposed framework,

CoLafier: Collaborative Noisy Label purifier with LID guidance. During training, we gen-

erate two augmented views of each instance’s features, which are then processed by both

LID-dis and LID-gen. CoLafier consider the consistency and discrepancy of the two views’

LID scores as produced by LID-dis to determine weights for each instance in our adapted

loss function. This reduces the risk of incorrect weight assignment. Both LID-dis and LID-
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gen undergo training using their respective weighted loss. Concurrently, LID-gen suggests

pseudo-labels from these two augmented views for each training instance. LID-dis processes

these pseudo-labels along with two views, deriving LID scores for them. These LID scores

and the difference between prediction from LID-dis and LID-gen guide the decision on the

label update. Information from the two views and two subnets together helps mitigate the

risk of label miscorrection. After training is complete, LID-gen is utilized as the classification

model to be deployed.

Contributions. Our contributions are as follows:

• We craft a pioneering approach to harness the LID score in the context of noisy

label learning, leading to the development of LID-dis subnet. LID-dis processes not only a

sample’s features but also its label as input. This yields an enhanced representation adept at

distinguishing between correct and incorrect labels across varied noise ratios and patterns.

• Drawing insights from the LID score, we introduce the CoLafier framework, a novel

solution that integrates two LID-dis and LID-gen subnets. This framework utilizes two

augmented views per instance, applying LID scores from the two views to weight the loss

function for both subnets. LID scores from two views and the discrepancies in prediction

from the two subnets inform the label correction decisions. This dual-view and dual-subnet

approach significantly reduces the risk of errors and enhances the overall effectiveness of the

framework.

• We conduct evaluation studies across varied noise conditions. Our findings demon-

strate that, even in the absence of explicit knowledge about noise characteristics, CoLafier

still consistently yields improved performance compared to state-of-the-art LNL methods.
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3.2 Related Works

Learning With Noisy Labels. In recent studies, two primary techniques have emerged

for training DNNs with noisy labels: sample selection and label correction. Sample selection

approaches focus on identifying potentially mislabeled samples and diminishing their influ-

ence during training. Such samples might be discarded [32, 33], given reduced weights in the

loss function [88, 5], or treated as unlabeled, with semi-supervised learning techniques ap-

plied [35, 36]. On the other hand, label correction strategies aim to enhance the training set

by identifying and rectifying mislabeled instances. Both soft and hard correction methods

have been proposed [88, 23, 37]. However, a prevalent challenge with these approaches is the

amplification of errors during training. If the model makes incorrect selection or correction

decisions, it can become biased and increasingly adapt to the noise. Another challenge arises

when certain methods presuppose knowledge of the noise label ratio and pattern, using this

information to inform their hyper-parameter settings [32, 36, 35]. However, in real-world

scenarios, this information is typically unavailable, rendering these methods less practical

for implementation.

Supervised Learning and Local Intrinsic Dimensionality. The Local Intrinsic Di-

mensionality (LID) [86] has been employed to detect adversarial examples in DNNs, as

showcased by [87]. Their research highlights that adversarial perturbations, a specific type

of input feature noise, tend to elevate the dimensionality of the local subspace around a test

sample. As a result, features rooted in LID can be instrumental in identifying such pertur-

bations. Within the Learning with Noisy Labels (LNL) domain, LID has been employed

as a global indicator to assess a DNN’s learning behavior and to develop adaptive learning

strategies to address noisy labels [89]. However, it has not been utilized to identify samples

with label noise.

In contrast to these applications, our study introduces a framework that leverages LID
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to detect and purify noisy labels at the sample level. Using LID, we can differentiate between

samples with accurate and inaccurate labels, and its insights further guide the decision to

replace noisy labels with more reliable ones.

3.3 Methodology

This section is organized as follows: we first introduce the problem definition, then we

demonstrate the utilization of the LID score to differentiate between true-labeled and false-

labeled instances. Finally, we present our proposed method, CoLafier: Collaborative Noisy

Label purifier with LID guidance.

3.3.1 Problem Definition

In this study, we address the problem of training a classification model amidst noisy

labels. Let’s define the feature space as X and Y = {1, ..., Nc} to be the label space. Our

training dataset is represented as D̃ = {(xi, ỹi)}Ni=1, where each ỹi = [ỹi,1, ỹi,2, ..., ỹi,Nc ] is

a one-hot vector indicating the noisy label for the instance xi. Here, Nc denotes the total

number of classes. If c is the noisy label class for xi, then ỹi,j = 1 when j = c; otherwise,

ỹi,j = 0. It is crucial to note that a noisy label, ỹi, might differ from the actual ground truth

label, yi. An instance is termed a true-labeled instance if ỹi = yi, and a false-labeled instance

if ỹi ̸= yi. The set of all features in D̃ is given by X = {xi|(xi, ỹi) ∈ D̃}. Our primary goal

is to devise a classification method, denoted as f(x; Θ) → ŷ, which can accurately predict

the ground-truth label of an instance. In this context, ŷi = [ŷi,1, ŷi,2, ..., ŷi,Nc ] is a probability

distribution over the classes, with
∑Nc

j=1 ŷi,j = 1.
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Figure 3.1: Distribution of LID scores for true-labeled versus false-labeled instances in three
noise conditions. The heights of the orange and blue bars represent the proportions of true-
labeled and false-labeled instances’ LID scores within specific bins, respectively. LID scores
are based on the enhanced representation of features and labels in the LID-dis. From top to
bottom, the noise conditions for the three figures are: 20% instance-dependent noise, 40%
instance-dependent noise, and 50% symmetric noise.

3.3.2 LID and Instance with Noisy Labels

In this section, we outline the use of a specially designed classifier: LID-based noisy

label discriminator (LID-dis) fLD, that employs LID as a feature to identify samples with

incorrect labels. Prior research [87] has leveraged the LID scores from the final layer of a

trained DNN classifier to characterize adversarial samples. However, in our context, the

noise is present in the labels, not in the features. To ensure that fLD can detect this noise,

we input both the features and label into fLD. fLD consists of three components: a standard

backbone model gLD (which accepts xi as input), a label embedding layer gLE that processes

the label ỹi, and a classification head hLD that takes the outputs of gLD and gLE to produce the

final classification. The output from the backbone model gLD(xi) and the label’s embedding

gLE(ỹi) are merged as follows:

z(xi, ỹi) = LayerNorm (gLD(xi) + gLE (ỹi)) (3.3.1)
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The result, z(xi, ỹi), the enhanced representation of (xi, ỹi), is then passed to the classification

head hLD to predict ỹi: ŷDi = hLD (z(xi, ỹi)). Here, ŷDi represents the predicted value of

ỹi. If we train fLD directly using the cross-entropy loss LCE(ỹi, ŷ
D
i ) = −

∑NC

j=1 ỹi,j log(ŷ
D
i,j),

the model will consistently predict ỹi. Using the noisy label as the "ground truth" label

for measuring prediction accuracy would yield a 100% accuracy rate. This is because the

model’s predictions are solely based on the input label ỹi. To compel the model to consider

both the input features and label, we randomly assign a new label ỹ∗i for each xi, ensuring

that ỹ∗i ̸= ỹi. We input the pair (xi, ỹ
∗
i ) into fLD to obtain another prediction ŷ∗Di . We then

employ the sum of the cross-entropy losses LCE(ỹi, ŷ
D
i ) + LCE(ỹi, ŷ

∗D
i ) to train the network.

This approach ensures that fLD doesn’t rely solely on the input label for predictions.

For LID calculation, we follow the method described in [89] (see Equation 1.5 in supple-

mentary materials). Note that the input to fLD is (xi, ỹi). Assume that (xi, ỹi) ∈ D̃B, D̃B ⊂

D̃. Here, D̃B is the mini-batch drawn from D̃. Let z(D̃B) = {z(xi, ỹi)|(xi, ỹi) ∈ D̃B}. The

equation to calculate LID score for (xi, ỹi) can be presented below:

L̂ID((xi, ỹi), D̃B) = −(
1

k

k∑
j=1

log
rj(z(xi, ỹi), z(D̃B))

rmax(z(xi, ỹi), z(D̃B))
)−1. (3.3.2)

Here, the term rj(z(xi, ỹi), z(D̃B)) represents the distance of z(xi, ỹi) to its j-th nearest

neighbor in the set D̃B, and rmax is the neighborhood’s radius. Following the training

procedure described above, in order to explore the properties of the LID score of z(xi, yi)

in fLD, we conducted an empirical study on the CIFAR-10 dataset with three types of

noise conditions: 20% instance-dependent noise, 40% instance-dependent noise, and 50%

symmetric noise. We used ResNet-34 [90] as the backbone network gLD. During the training

procedure, we recorded the estimation of the LID score (computed by Equation 3.3.2) for

each instance (xi, ỹi) at every epoch. We then split these LID scores into equal length

bins and visualized the percentage distribution of false-labeled instances (ỹi ̸= yi) and true-

labeled instances (ỹi = yi) in each bin in Figure 3.1. As shown in this figure, for all three
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types of noise conditions, false-labeled instances tend to have higher LID scores compared to

true-labeled instances. This observation underscores that, across various noise conditions,

LID scores from LID-dis serve as a robust metric to differentiate between true-labeled and

false-labeled instances.

3.3.3 Proposed Method: CoLafier

Double
Augmentation

Random
Different Label

Assignment

Dataset:

LID-guided Label
Generator (LID-gen) 

 

Backbone            

Label embedding
   

Classifier
   

LID-based
Label Update

LID-based
Loss Weight
Assignment

LID-based Noisy Label Discriminator
(LID-dis)    

Figure 3.2: The overall framework of CoLafier.

Informed by these observations, we introduce a collaborative framework, CoLafier:

Collaborative Noisy Label purifier with LID guidance, tailored for learning with noisy labels.

The comprehensive structure of CoLafier is depicted in Figure 3.2, and the pseudo-code of

CoLafier is presented in the supplementary materials. This framework is bifurcated into two

primary subnets: LID-dis fLD and LID-guided label generator (LID-gen) fGE. Specifically,

fGE operates as a conventional classification model, predicting ŷi based on xi. The training

regimen of CoLafier unfolds in four distinct phases:

1. Pre-processing: For an instance (xi, ỹi) drawn from batch D̃B, we employ double

augmentation to generate two distinct views: v1i and v2i . Subsequently, a new label ỹ∗i

is assigned, ensuring it differs from ỹi.

2. Prediction and LID Calculation: Post inputting the features and (features, label)

pairs into LID-dis and LID-gen, predictions are derived from both subnets. Let’s denote



PhD Dissertation: Dongyu Zhang 47

the predictions from fGE as ŷ1,Gi and ŷ2,Gi . Concurrently, CoLafier computes the LID

scores for both (v1i , ỹi) and (v2i , ỹi).

3. Loss Weight Assignment: Utilizing the two LID scores from last step, CoLafier

allocates weights to each instance. Every instance is endowed with three distinct

weights: clean, noisy, hard weights, with each weight catering to a specific loss function.

4. Label Update: LID-dis processes (v1i , ŷ
1,G
i ) and (v2i , ŷ

2,G
i ), deriving LID scores for

them. These scores and the difference between prediction from fLD and fGE subse-

quently guide the decision on whether to substitute ỹi with a combination of ŷ1,Gi and

ŷ2,Gi for future epochs.

Pre-processing. Consider a mini-batch D̃B = {(xi, ỹi)}NB
i=1 drawn from D̃. This batch can

be partitioned into a feature set XB = {xi|(xi, ỹi) ∈ D̃B} and a label set ỸB = {ỹi|(xi, ỹi) ∈

D̃B}. For each xi ∈ XB, CoLafier generates two augmented views, v1i and v2i . This two-

augmentation design ensures that weight assignment and label update decisions in subse-

quent steps are not solely dependent on the original input. Such a design can lower the risk

of error accumulation during the training procedure. The augmented views lead to: V 1
B =

{v1i |v1i = augmentation1(xi),∀xi ∈ XB}, V 2
B = {v2i |v2i = augmentation2(xi),∀xi ∈ XB}.

Same as Section 3.3.2, for each label ỹi in ỸB, a random new label ỹ∗i is assigned, ensuring

that ỹ∗i ̸= ỹi. The resulting set is given by: Ỹ ∗
B = {ỹ∗i |ỹ∗i = assignNewLabel(ỹi), ỹi ∈ ỸB}.

Consequently, we can define four input pair sets: D̃k
B = {(vki , ỹi)|vki ∈ V k

B , ỹi ∈ ỸB}, D̃k∗
B =

{(vki , ỹ∗i )|vki ∈ V k
B , ỹ

∗
i ∈ Ỹ ∗

B}, where k ∈ {1, 2}. The LID-gen subnet fGE processes V 1
B and

V 2
B, while the LID-dis subnet fLD handles D̃1

B, D̃
2
B, D̃

1∗
B , and D̃2∗

B .

Prediction and LID Calculation. The subnet fGE takes V 1
B and V 2

B as inputs to pre-

dict: Ŷ k,G
B = {ŷk,Gi |ŷk,Gi = fGE(v

k
i ), v

k
i ∈ V k

B}, where k ∈ {1, 2}. The subnet fLD processes

D̃1
B, D̃

2
B, D̃

1∗
B , and D̃2∗

B to predict: Ŷ k,D
B = {ŷk,Di |ŷk,Di = fLD(v

k
i , ỹi), (v

k
i , ỹi) ∈ D̃k

B},

Ŷ k∗,D
B = {ŷk∗,Di |ŷk∗,Di = fLD(v

k
i , ỹ

∗
i ), (v

k
i , ỹ

∗
i ) ∈ D̃k∗

B }, where k ∈ {1, 2}. In fLD, each input



PhD Dissertation: Dongyu Zhang 48

pair result in an enhanced representations, we use Equation 3.3.2 to calculate LID scores for

instances in D̃1
B and D̃2

B:

L̂ID
W
(vki , ỹi) = L̂ID((vki , ỹi), D̃

k
B), (3.3.3)

L̂ID
W
(D̃k

B) = {L̂ID
W (

vki , ỹi
)
|
(
vki , ỹi

)
∈ D̃k

B}, (3.3.4)

where k ∈ {1, 2}. These LID scores are for the weight assignment use only. After we

obtain prediction Ŷ 1,G
B and Ŷ 2,G

B from fGE, we create another two input pair sets: D̂k
B =

{(vki , ŷ
k,G
i )|vki ∈ V k

B , ŷ
k,G
i ∈ Ŷ k,G

B }, where k ∈ {1, 2}. Both D̂1
B and D̂2

B are fed into the fLD to

obtain enhanced representations. Because we want to compare the LID scores from current

noisy label and fGE’s prediction to determine if we want to update the label, we create two

union sets, then calculate LID scores within the two sets as follows:

Uk
B = D̃k

B ∪ D̂k
B, (3.3.5)

L̂ID
U
(vki , ỹ

k
i ) = L̂ID((vki , ỹ

k
i ), U

k
B), (3.3.6)

L̂ID
U
(vki , ŷ

k,G
i ) = L̂ID((vki , ŷ

k,G
i ), Uk

B), (3.3.7)

L̂ID
U
(Uk

B) = {L̂ID
U
(vki , ỹ

k
i )|(vki , ỹki ) ∈ D̃k

B}∪

{L̂ID
U
(vki , ŷ

k,G
i )|(vki , ŷ

k,G
i ) ∈ D̂k

B},
(3.3.8)

where k ∈ {1, 2}. We also collect the output from fLD: Ŷ k,G,D
B = {ŷk,G,D

i |ŷk,G,D
i = fLD(v

k
i , ŷ

k,G
i ),

(vki , ŷ
k,G
i ) ∈ D̂k

B}, where k ∈ {1, 2}. Note that Ŷ 1,G,D
B and Ŷ 2,G,D

B are only used in label update

step and do not participate in loss calculation.

Loss Weight Assignment. After estimating the LID scores, we compute weights for each

instance. We introduce three types of weights: clean, hard, and noisy. Each type of weight

is associated with specific designed loss function. A higher clean weight indicates that the

instance is more likely to be a true-labeled instance, while a higher noisy weight suggests the
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opposite. A high hard weight indicates uncertainty in labeling. As observed in Section 3.3.2,

instances with smaller LID scores tend to be correctly labeled. Thus, we assign higher clean

weights to instances with lower LID scores, higher noisy weights to instances with higher

LID scores, and higher hard weights to instances with significant discrepancies in LID scores

from two views. To mitigate potential biases in weight assignment, we prefer using L̂ID
W

over L̂ID
U
. This preference is due to the observation that the prediction from fGE that are

identical to the label could lower the label’s L̂ID
U

score. Such a decrease does not necessarily

indicate the correctness of a label and hence could skew the weight assignment. The weights

are defined as:

qk,Wlow = quantile(L̂ID
W
(D̃k

B), ϵ
W
low), (3.3.9)

qk,Whigh = quantile(L̂ID
W
(D̃k

B), ϵ
W
high), (3.3.10)

qk,Wi =
qk,Whigh − L̂ID

W
(vki , ỹi)

qk,Whigh − qk,Wlow

, (3.3.11)

wi,k = min (max (qk,Wi , 0), 1), (3.3.12)

wi,c = min (wi,1, wi,2), (3.3.13)

wi,h = |wi,1 − wi,2|, (3.3.14)

wi,n = min (1− wi,1, 1− wi,2), (3.3.15)

where k ∈ {1, 2}. Here, wi,c, wi,h, and wi,n represent clean, hard, and noisy weights, re-

spectively. It’s ensured that the sum of wi,c, wi,h, and wi,n equals 1, which is proved

in the supplementary materials. The thresholds ϵWlow and ϵWhigh are predefined, satisfying

0 ≤ ϵWlow ≤ ϵWhigh ≤ 1. Initially, the value of ϵWhigh is set low and is then linearly increased

over τ epochs. This approach ensures that the model does not prematurely allocate a large

number of high clean weights, given that the majority of labels have not been refined in the

early stages. Only instances with low LID scores are predominantly correctly labeled. For

instances with a high clean weight, we employ the cross-entropy loss for optimization. The
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clean loss is defined as:

Lclean,GE = wi,c

2∑
k=1

LCE

(
ỹi, ŷ

k,G
i

)
, (3.3.16)

Lclean,LD = wi,c

2∑
k=1

(
LCE

(
ỹi, ŷ

k,D
i

)
+ λ∗LCE

(
ỹi, ŷ

k∗,D
i

))
. (3.3.17)

Instances with a high wi,h indicate a significant discrepancy between L̂ID(v1i , ỹi) and

L̂ID(v2i , ỹi). This suggests that these instances might be near the decision boundary. While

we aim to utilize these instances, the cross-entropy loss is sensitive to label noise. Therefore,

we adopt a more robust loss function, the generalized cross entropy (GCE) [91], defined as:

LGCE (ỹi, ŷi) =
∑NC

j=1 ỹi,j (1− (ŷi,j)
q) /q, (3.3.18)

where q ∈ (0, 1]. As shown in [91], this loss function approaches the cross-entropy loss as

q → 0 and becomes the MAE loss when q = 1. We set q = 0.7 as recommended by [91]. The

hard loss is then:

Lhard,GE = wi,h

2∑
k=1

LGCE

(
ỹi, ŷ

k,G
i

)
, (3.3.19)

Lhard,LD = wi,h

2∑
k=1

(
LGCE

(
ỹi, ŷ

k,D
i

)
+ λ∗LGCE

(
ỹi, ŷ

k∗,D
i

))
. (3.3.20)

Instances with a high wi,n are likely to be mislabeled. To leverage these instances

without being influenced by label noise, we adopt the CutMix augmentation strategy [92].

In essence, CutMix combines two training samples by cutting out a rectangle from one and

placing it onto the other 1. For a detailed explanation and methodology of CutMix, readers

are referred to [92]. We apply CutMix twice for each sample within D̃1
B and D̃2

B. The
1In this work, we use images as input. While CutMix was designed for images, it hasn’t been widely

applied to other types of input. For non-image data, other augmentation methods like Mixup [93] can be
considered.
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augmented views are defined as:

v̌ki = Mkvki + (1−Mk)vkrk(i), k ∈ {1, 2}. (3.3.21)

y̌ki = λkỹi + (1− λk)ỹrk(i) k ∈ {1, 2}. (3.3.22)

Here, r1(i) and r2(i) are random indices for the two views, and Mk is a binary mask indicating

the regions to combine. The factors λ1 and λ2 are sampled from the beta distribution

Beta(α, α), with α = 1 as suggested by [92]. The proportion of the combination is determined

by the λ term. Specifically, λ represents the ratio of the original view retained, while 1− λ

denotes the proportion of the other view that’s patched in. The CutMix views v̌1i and v̌2i

are then fed into fGE to obtain predictions ŷ1̌,Gi and ŷ2̌,Gi . Similarly, (v̌1i , y̌1i ) and (v̌2i , y̌
2
i ) are

processed by fLD to get ŷ1̌,Di and ŷ2̌,Di .

The loss for CutMix instances is defined as:

L′
noisy,GE =

2∑
k=1

[
λkLCE

(
ỹi, ŷ

ǩ,G
i

)
+ (1− λk)LCE

(
ỹrk(i), ŷ

ǩ,G
)]

, (3.3.23)

L′
noisy,LD =

2∑
k=1

[
λkLCE

(
ỹi, ŷ

ǩ,D
i

)
+ (1− λk)LCE

(
ỹrk(i), ŷ

ǩ,D
)]

. (3.3.24)

To enhance the learning from instances with high noise weights in fLD, we also employ a

consistency loss. This loss, based on cosine similarity, ensures consistent predictions between

ỹi and ỹ∗i without relying on label guidance. The consistency loss for fLD is:

Lcons,LD =
2∑

k=1

(
1− cos

(
ŷk,Di , ŷk∗,Di

))
. (3.3.25)

We combine the consistency loss and CutMix loss to get the noisy loss as:

Lnoisy,GE = wi,nL′
noisy,GE, (3.3.26)

Lnoisy,LD = wi,n(L′
noisy,LD + λconsLcons,LD). (3.3.27)
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The overall training objectives for fGE and fLD combine the clean, hard, and noisy

losses:

LGE = Lclean,GE + Lhard,GE + Lnoisy,GE, (3.3.28)

LLD = Lclean,LD + Lhard,LD + Lnoisy,LD. (3.3.29)

Both fGE and fLD are optimized separately using their respective loss functions.

Label Update. For determining whether to update the label based on the prediction from

fGE, we consider both the LID scores and the prediction difference between fGE and fLD. As

discussed in Section 3.3.2, instances with smaller LID scores are more likely to be correctly

labeled. If the LID scores associated with fGE’s prediction are smaller than the current

label’s scores, then the prediction is more likely to be accurate. The prediction difference is

defined as:

∆ỹki =
∑Nc

j=1|ŷ
k,G
i,j − ŷk,Di,j |, k ∈ {1, 2}. (3.3.30)

∆ŷki =
∑Nc

j=1|ŷ
k,G
i,j − ŷk,G,D

i,j |, k ∈ {1, 2}. (3.3.31)

The principle of agreement maximization suggests that different models are less likely to

agree on incorrect labels [33]. The ∆ value measures the level of disagreement between fGE

and fLD. A larger ∆ value indicates that the corresponding prediction or label is less likely

to be correct. Generally, if a prediction has a smaller LID score and a smaller ∆ compared

to the current label, it’s a candidate for label replacement. Using the LID scores computed

in Section 3.3.3, CoLafier make decision on label updating as follows:

qk,Ulow = quantile(L̂ID
U
(Uk

B), ϵ
U
low), (3.3.32)

qk,Uhigh = quantile(L̂ID
U
(Uk

B), ϵ
U
high), (3.3.33)

q̃k,Ui = (qk,Uhigh − L̂ID
U
(vki , ỹi))/(q

k,U
high − qk,Ulow ), (3.3.34)
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q̂k,Ui = (qk,Uhigh − L̂ID
U
(vki , ŷ

k,G
i ))/(qk,Uhigh − qk,Ulow ), (3.3.35)

t̃ki = min (1,max (0, q̃k,Ui ∗ (2−∆ỹki )/2)), (3.3.36)

t̂ki = min (1,max (0, q̂k,Ui ∗ (2−∆ŷki )/2)), (3.3.37)

where k ∈ {1, 2}, ϵUlow and ϵUhigh are thresholds. Mirroring the approach of ϵWhigh, ϵUhigh starts

low and linearly rises over τ epochs, enabling the model to judiciously assess the reliability

of labels and predictions. The ∆ values are normalized to the [0,1] range using (2 −∆)/2,

which is elaborated in the supplementary materials. In these equations, predictions or labels

with smaller LID values and smaller cross-subnet differences have larger t values, and vice

versa. The process of converting both ŷ1,Gi and ŷ2,Gi to one-hot label vectors is as follows:

ýi = [ýi,0, ýi,1, ...ýi,Nc ] (3.3.38)

ýi,l =


1, if l = argmax

j
(ŷi,j)

0, otherwise

We determine whether to update the label as follows:

cond = t̂1i > t̃1i & t̂2i > t̃2i

& t̂1i > ϵk & t̂2i > ϵk & ý1,Gi = ý2,Gi

(3.3.39)

ỹi =


ý1,Gi , if cond

ỹi, otherwise
(3.3.40)

In this decision-making process, a label is only updated when the prediction’s t value from

both views surpasses a predefined threshold ϵk and is higher than higher than the t value

of the corresponding label. Both predictions ý1,Gi and ý2,Gi must also be equal, minimizing

the chance of assigning an incorrect label to instance xi. Note that the new ỹi is used for
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the next epoch, ensuring that in current epoch, the loss calculation in Section 3.3.3 is not

affected by the label update.

3.4 Experiments

In this section, we assess the performance of CoLafier across various noisy label set-

tings. We also present ablation studies to validate the contribution of each component. All

experiments are executed using A100 GPUs and PyTorch 1.13.1.

3.4.1 Experiment Setup

CoLafier is evaluated on CIFAR-10 [94] with three type of noise: symmetric (sym.),

asymmetric (asym.) and instance-dependent (inst.) noise. Sym. noise involves uniformly

flipping labels at random, while asym. noise flips labels between neighboring classes at a

fixed probability, following methods in [32, 36]. Inst. noise is generated per instance using a

truncated Gaussian distribution as per [35, 95]. Noise ratios are set at {20%, 50%, 80%} for

sym. noise, 40% for asym. noise, and {20%, 40%, 60%} for inst. noise, aligning with settings

in [96, 35]. Additionally, experiments are conducted on CIFAR-10N [97], a real-world noisy

dataset with re-annotated CIFAR-10 images. CIFAR-10N provides three submitted labels

(i.e., Random 1, 2, 3) per image, aggregated to create an Aggregate and a Worst label. The

Aggregate, Random 1, and Worst label are used in experiment. ResNet-18 [90] serves as

the backbone for CIFAR-10 with sym. and asym. noise, while ResNet-34 is used for CIFAR-

10 with inst. noise and CIFAR-10N. Additional details are provided in the supplementary

materials.
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Table 3.1: Performance comparison against SOTA methods on the CIFAR-10 dataset under
symmetric and asymmetric noise. Our implementations are marked with *; others are from
[35]. Bold scores are the highest, and underlined scores the second highest in each setting.

Methods Sym. 20% Sym. 50% Sym. 80% Asym. 40% Average

Cross Entropy 83.31 ± 0.09 56.41 ± 0.32 18.52 ± 0.16 77.06 ± 0.26 58.83
Mixup [93] 90.17 ± 0.12 70.94 ± 0.26 47.15 ± 0.37 82.68 ± 0.38 72.74
Decoupling [98] 85.40 ± 0.12 68.57 ± 0.34 41.08 ± 0.24 78.67 ± 0.81 68.43
Co-teaching [32] 87.95 ± 0.07 48.60 ± 0.19 17.48 ± 0.11 71.14 ± 0.32 56.29
JointOptim [99] 91.34 ± 0.40 89.28 ± 0.74 59.67 ± 0.27 90.63 ± 0.39 82.73
Co-teaching+[100] 87.20 ± 0.08 54.24 ± 0.23 22.26 ± 0.55 79.91 ± 0.46 60.90
GCE [91] 90.05 ± 0.10 79.40 ± 0.20 20.67 ± 0.11 74.73 ± 0.39 66.21
PENCIL [101] 88.02 ± 0.90 70.44 ± 1.09 23.20 ± 0.81 76.91 ± 0.26 64.64
JoCoR [33] 89.46 ± 0.04 54.33 ± 0.12 18.31 ± 0.11 70.98 ± 0.21 58.27
DivideMix* [36] 92.87 ± 0.46 94.75 ± 0.14 81.25 ± 0.26 91.88 ± 0.12 90.19
ELR [102] 90.35 ± 0.04 87.40 ± 3.86 55.69 ± 1.00 89.77 ± 0.12 80.80
ELR+ [102] 95.27 ± 0.11 94.41 ± 0.11 81.86 ± 0.23 91.38 ± 0.50 90.73
Co-learning [103] 92.14 ± 0.09 77.99 ± 0.65 43.80 ± 0.76 82.70 ± 0.40 74.16
GJS* [104] 83.57 ± 1.24 50.26 ± 2.54 15.49 ± 0.18 85.64 ± 1.37 58.74
DISC* [35] 95.99 ± 0.15 95.03 ± 0.12 81.84 ± 0.21 94.20 ± 0.07 91.69
CoLafier (ours) 95.32 ± 0.08 93.64 ± 0.11 84.42 ± 0.20 94.67 ± 0.11 92.01

3.4.2 Experiment Results

Table 3.1 shows that CoLafier consistently ranks among the top three in prediction

accuracy on the CIFAR-10 dataset under both sym. and asym. noise conditions, achieving

the highest average accuracy across four scenarios. Its robustness to various noise ratios and

types stands out. In Table 3.2, CoLafier achieves the highest average accuracy under inst.

noise, notably excelling at an 80% noise ratio. Table 3.3 further demonstrates CoLafier’s

superior performance and robustness under real-world noise settings, particularly under high

noise conditions (Worst, 40% noise). These findings underscore the robustness and superior

generalization capability of CoLafier.
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Table 3.2: Performance comparison against SOTA methods on the CIFAR-10 dataset under
instance dependent noise. Our implementations are marked with *; others are from [35].
Bold scores are the highest, and underlined scores the second highest in each setting.

Methods Inst. 20% Inst. 40% Inst. 60% Average

Cross Entropy 83.93 ± 0.15 67.64 ± 0.26 43.83 ± 0.33 65.13
Forward T [105] 87.22 ± 1.60 79.37 ± 2.72 66.56 ± 4.90 77.72
DMI [106] 88.57 ± 0.60 82.82 ± 1.49 69.94 ± 1.34 80.44
Mixup [93] 87.71 ± 0.66 82.65 ± 0.38 58.59 ± 0.58 76.32
GCE [91] 89.80 ± 0.12 78.95 ± 0.15 60.76 ± 3.08 76.50
Co-teaching [32] 88.87 ± 0.24 73.00 ± 1.24 62.51 ± 1.98 74.79
Co-teaching+ [100] 89.80 ± 0.28 73.78 ± 1.39 59.22 ± 6.34 74.27
JoCoR [33] 88.78 ± 0.15 71.64 ± 3.09 63.46 ± 1.58 74.63
Reweight-R [107] 90.04 ± 0.46 84.11 ± 2.47 72.18 ± 2.47 82.11
Peer Loss [108] 89.12 ± 0.76 83.26 ± 0.42 74.53 ± 1.22 82.30
DivideMix* [36] 92.95 ± 0.29 94.99 ± 0.14 89.30 ± 1.32 92.41
CORSES2 [109] 91.14 ± 0.46 83.67 ± 1.29 77.68 ± 2.24 84.16
CAL [96] 92.01 ± 0.12 84.96 ± 1.25 79.82 ± 2.56 85.60
DISC* [35] 96.34 ± 0.13 95.27 ± 0.21 91.15 ± 2.20 94.25
CoLafier (ours) 95.73 ± 0.10 94.66 ± 0.11 92.45 ± 1.25 94.28

Table 3.3: Performance comparison on CIFAR-10N. Our implementations are marked with
*; others are from [110]. Bold scores are the highest, and underlined scores the second
highest in each setting.

Methods Aggregate Random Worst Average

Cross Entropy 87.77 ± 0.38 85.02 ± 0.65 77.69 ± 1.55 83.49
Forward T [105] 88.24 ± 0.22 86.88 ± 0.50 79.79 ± 0.46 84.97
Co-teaching [32] 91.20 ± 0.13 90.33 ± 0.13 83.83 ± 0.13 88.45
ELR+ [102] 94.83 ± 0.10 94.43 ± 0.41 91.09 ± 1.60 93.45
CORES2 [109] 95.25 ± 0.09 94.45 ± 0.14 91.66 ± 0.09 93.79
DISC* [35] 95.96 ± 0.04 95.33 ± 0.12 90.20 ± 0.24 93.83
CoLafier (ours) 95.74 ± 0.14 95.21 ± 0.27 92.65 ± 0.10 94.53

3.4.3 Ablation Study

In our ablation study, we examine four CoLafier variants to assess the impact of the dual-

view design and the three loss types. Table 3.4 presents these variants: the first uses only
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the original features for weight assignment and label updates; the second to fourth exclude

both noise & hard loss, noise loss only, or, hard loss only, respectively. All these variants

still use LID scores to assign weight and determine label updates. Results show that the

complete CoLafier model outperforms its variants. The performance gap between the single-

view variant and CoLafier highlights the dual-view approach’s role in reducing errors and

enhancing model robustness. The lesser performance of the latter three variants compared

to CoLafier confirms that combining all three loss types effectively utilizes information from

both correctly and incorrectly labeled instances.

Table 3.4: Ablation study for two views and loss types.

Variations CIFAR-10, 40% Inst. Noise

CoLafier w/o two views 84.31 ± 0.59
CoLafier w/o noise and hard loss 91.06 ± 0.22

CoLafier w/o noise loss 91.36 ± 0.34
CoLafier w/o hard loss 93.56 ± 0.25

CoLafier 94.66 ± 0.11

3.5 Conclusion

In this study, we present CoLafier, a novel framework designed for learning with noisy

labels. It is composed of two key subnets: LID-based noisy label discriminator (LID-dis) and

LID-guided label generator (LID-gen). Both two subnets leverage two augmented views of

features for each instance. The LID-dis assimilates features and labels of training samples to

create enhanced representations. CoLafier employs LID scores from enhanced representations

to weight the loss function for both subnets. LID-gen suggests pseudo-labels, and LID-dis

process pseudo-labels along with two views to derive LID scores. These LID scores and the

discrepancies in prediction from the two subnets inform the label correction decisions. This

dual-view and dual-subnet approach significantly reduces the risk of errors and enhances the



PhD Dissertation: Dongyu Zhang 58

overall effectiveness of the framework. After training, LID-gen is ready to be deployed as

the classifier. Extensive evaluations demonstrate CoLafier’s superiority over existing state

of the arts in various noise settings, notably improving prediction accuracy.



Chapter 4

LLM-based Two-Level Foodborne Illness

Detection Label Annotation with

Limited Labeled Samples

This work will be submitted to top quality conference, with me serving as the lead

author, alongside Ruofan Hu and Professor Elke Rundensteiner. My contributions include

the development of the labeling framework, and the execution of the experiments. Below is

an abridged version of this work.

4.1 Motivation

Foodborne illnesses constitute a significant public health threat, impacting millions

of Americans annually. They lead to productivity loss, elevated medical expenses, and in

some cases, fatalities [111, 112, 113]. Early detection of foodborne illnesses is crucial for risk

mitigation, outbreak control, and ensuring public health, while conventional approaches of

collecting data from official sources such as hospitals or CDC reporting systems, while more

59
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controlled, can take precious time [114]. Consumer-generated data, spanning social media

to internet searches, has emerged as a valuable resource for surveillance, paving the way for

the development of surveillance tools grounded in conventional supervised machine learning.

Local health agencies have tested these tools utilizing Twitter (current name is X) data in

cities like New York [115], Chicago [116], and Las Vegas [117], Yelp reviews in San Francisco

[118] and New York [119], as well as Google search queries in Las Vegas and Chicago [120].

Machine Learning or Deep Learning models are typically employed to detect foodborne

illness incidents within social media posts [114, 117], in the aforementioned surveillance

systems. An effective method should not only ascertain if a given post signifies a potential

foodborne illness incident but also automatically extract relevant attributes from the post for

aggregation into actionable insights. This post examination task bifurcates into two levels:

at the post level, the objective is to predict whether the post indicates a foodborne illness

incident, whereas at the word level, the aim is to identify mentions of slots, aka entities

(e.g., food, symptom, location, time) related to the noted foodborne illness incident. These

entities can be critical for uncovering for instance where the treat may have originated in

terms of food type or location, as well as its likely spread.

Nonetheless, supervised models necessitate high-quality labeled training data for as-

suring accurate results. This in turn requires access to experts with domain knowledge to

provide these labels. However, this approach is exceedingly resource-intensive and often pro-

hibitively expensive to gather [5]. In our problem setting, a post has to be labeled on both

the post and word level, requiring word-by-word analysis, which is more demanding and

time-intensive compare to the traditional annotation of a single label for a possibly complex

object (such as our social media posts). Budget constraints often hinder the collection of an

adequate number of labels, leaving substantial data unlabeled.

Other than collecting label from expert, crowdsourcing platform could be a alternative

way. In our prior study [4], we created a tweet dataset, TWEET-FID, for foodborne illness
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incident detection. We collected labels from crowdsourced workers, to investigate the crowd-

sourced labeling quality, we compared these with labels from domain experts, with the latter

serving as the ground truth, as detailed in Chapter 1.1.1. Throughout the data collection

process, we gathered annotations from five workers per tweet and employed aggregation al-

gorithms to synthesize a single annotation (including both tweet and word-level label) for

each tweet. Despite deploying algorithms to filter out low-quality annotations, a notable

quality gap between crowdsourced and expert labels remained, as shown in Table 4.2. The

cost of crowdsourcing was significant, with each annotation costing $0.1, leading to at least

$0.5 spent per tweet, underscoring the economic and quality challenges of this approach.

Freezed LLM

2. Demonstration
examples

1. Task Description

3. query text

Freezed LLM

2. Demonstration
examples

1. Task Description

3. query text

In-context Learning In-context Learning + Chain of Thought Technique
Please determine if the given text indicates a foodborne
illness incident.
Post: I ate wings and got food poisoning.
Post: I 've been sick, covid was the worst. 
...

Post: I just got food poisoning and throwing up.      

Answer: Yes
Answer: No
...

Answer:

Yes4. Model output

Please determine if the given text indicates a foodborne
illness incident.
Post: I ate wings and got food poisoning.
Answer: This post describes a foodborne illness incident.
"wings" is the food item that causes the foodborne illness
incident. So, the answer is "Yes".
 
Post: I've been sick, covid was the worst
Answer: This post does not describe a foodborne illness
incident. There is no word in the text related to foodborne illness
incident. So, the answer is "No".

...

Post: I just got food poisoning and throwing up.      

Answer: The word "throwing up" is the symptom caused by
the foodborne illness incident. So, the answer is "Yes".

4. Model output

Figure 4.1: Illustration of In-Context Learning (ICL) and the Chain of Thought (CoT)
technique. ICL utilizes a demonstration context with a task description and a few examples.
Taking this demonstration context and a query text as the input, Large Language Models
(LLMs) make predictions without updating parameters. The CoT technique introduces
intermediate reasoning steps between inputs and outputs during the demonstration phase,
guiding LLMs to reveal not only the final answer but also the underlying reasoning process.

Recently, LLMs have demonstrated a remarkable in-context learning (ICL) ability, en-

abling them to make predictions based on few examples within a specific demonstration con-

text [11]. The left part of Figure 4.1 illustrates how ICL works. The demonstration context

contains a task description and few demonstration examples. By feeding this demonstration

context and a query text into LLMs, LLMs make predictions for the query text. This abil-



PhD Dissertation: Dongyu Zhang 62

ity has been showcased across a variety of complex tasks, including solving math problems

[45]. ICL operates without updating model parameters, directly leveraging the pretrained

models for predictions. This ability is particularly advantageous in scenarios with limited

resources. Further enhancing LLMs’ efficacy, some studies [45, 121] have introduced the

concept of chain-of-thoughts processes (CoT). As shown in the right part of Figure 4.1, this

CoT approach involves adding intermediate reasoning steps between inputs and outputs in

the demonstration phase, thereby guiding LLMs to predict not just the final answer but the

underlying reasoning process as well. It is interesting in that reasoning steps to be exposed

would allow us to check for the correctness of the logical processes underlying a response.

Beyond this increase in interpretability, this has also been shown that the CoT method

enhances LLM performance significantly.

Recently, prior work has utilized LLMs as annotators to generate labels for text [43, 42].

These studies have demonstrated the potential for LLMs in achieving text annotation and

other related NLP tasks. Compared to human annotation, LLM generates good quality label

at a lower cost [11]. However, we note that most of these works focus on the annotation task

on a single level. To the best of our knowledge, there has yet to be research exploring the

application of LLMs for annotating data at two or multiple levels of social media posts. The

later is now the focus of our study.

Problem Definition. In this study, we propose to address the problem of annotating

two-level labels for foodborne illness detection in social media posts utilizing a limited number

of labeled samples.

Figure 4.2 illustrates a dataset of posts collected for the task of detecting foodborne

illness incidents. The post level annotation determines whether the post signals a foodborne

illness incident, while the word level annotations identify the entity type of each word that

relates to the incident. Only a small subset of posts have been labeled by human annotators

at both levels. Our objective is to explore the potential of LLMs for this annotation problem,
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Figure 4.2: LLM-based Two-level Foodborne Illness Detection Label Annotation with limited
human annotated samples. Given a social media post dataset for foodborne illness detection
task, where limited number of posts have human labels for both two levels. Our goal is to
develop a in context learning framework to assign labels for unlabeled posts with LLMs.

in comparison to traditional methods such as supervised learning models or crowdsourcing

annotations. The focus is on developing a method based on in-context learning that leverages

an LLM 1 to annotate unlabeled posts across both post and word levels.

Challenges. • Interdependency between two levels. This task requires annotations at

both the post and word levels. It involves not only identifying whether a post suggests a

foodborne illness incident but also extracting related entities. Importantly, an entity must

be directly linked to a foodborne illness incident to be considered relevant. For example,

consider a sentence like “Just watched a documentary on food safety, which really opened

my eyes to the importance of avoiding food poisoning. #awareness.” Although it mentions

“food poisoning” and “food safety”, these references are not connected to a specific incident.

This necessitates that the LLM accurately assesses the relevance of such entities to an actual
1Throughout this study, we employ GPT-3.5-turbo [122] as our backbone LLM, and unless otherwise

specified, references to LLMs pertain specifically to GPT-3.5-turbo. However, it is important to note that
our labeling framework is designed to be adaptable and could be seamlessly applied to other advanced LLMs,
including GPT-4 [123], Gemini [124], and Llama 2 [9].
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foodborne illness incident. Additionally, for post-level labeling, the LLM must determine

if any entities in the text suggest a foodborne illness incident. This complex task requires

precise guidance for the LLM to comprehend and accurately perform the annotations.

• Model hallucination in labeling procedure. A well-known challenge with LLMs is their

tendency to “hallucinate”, often leading to discrepancies between the content generated by

the LLMs and the ground truth [125, 12]. In our situation, most posts do not indicate

foodborne illness incidents, and relevant entities are rare within the dataset [4]. However,

the LLM might incorrectly label many irrelevant posts or words as related, resulting in

numerous false positives. Thus, addressing model hallucination is essential in the labeling

process, highlighting the importance of developing strategies to minimize these discrepancies

and ensure the accuracy of LLM annotations.

• Budget and token constraint. Access to advanced, closed-source LLMs typically in-

volves API usage that incurs a cost, calculated per token for both inputs and outputs[126].

Additionally, these APIs enforce a maximum token limit [123]. This limitation constrains the

number of examples we can include in the demonstration context and restricts the length of

outputs the model can generate. Therefore, it’s imperative to design the labeling framework

judiciously to secure high-quality annotations while managing token usage efficiently and

maintaining costs at a viable level.

Proposed Method. To overcome these challenges, we propose a novel labeling frame-

work, ICL2FID: In-context Learning based Annotation for Two-level Foodborne Illness De-

tection. ICL2FID consists of three steps. Initially, in the word-level labeling step, we leverage

the CoT method to guide the LLM to first access the post’s overall relevance to foodborne

illness incident before identifying relevant entities within. Subsequently, in the word-level

label verification step, the model is instructed to first evaluates the identified entity’s rel-

evance to the foodborne illness incident, then determine its validity. Irrelevant entity are

discarded. The final step involves presenting the model with word-level labeling outcomes
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and instructing it to verify these results before concludes whether the post indicates a food-

borne illness incident. Labeled posts in the dataset compose the demonstration example set.

Distinct retrieval strategy is employed at each step to ensure a diverse range of demonstra-

tion posts and labels. This approach helps avoid repetitive exposure to the same posts and

labels throughout the labeling process, thus reducing potential biases.

Contributions. Our key contributions are as follows:

• We propose ICL2FID, the first labeling framework that employs LLMs to annotate

posts with two-level labels for foodborne illness detection. ICL2FID generates word and

post level labels in a sequence of steps. To better utilize the interconnection between post

and word levels, ICL2FID instructs the LLM to leverage information from one level when it

makes a prediction on the other level. As we will demonstrate in Section 4.3.2, this yields

improved labeling results on both levels.

• To mitigate model hallucination, we incorporate a verification step between word and

post level labeling. This verification step eliminates incorrect entities extracted in the former

step, preventing them from influencing subsequent labeling outcomes. In this verification

step, we introduce Existence Diversity Similarly, a demonstration example retrieval method

to provide the model with both positive (extracted entity is correct) and negative (extracted

entities are not correct) examples, encouraging a thorough analysis of whether previously

extracted entities are genuinely related to foodborne illness incidents. At the post level

labeling step, we propose augmented diversity similarity, another demonstration example re-

trieval method. This method prepares the model to access if extracted entities from previous

step indicate a foodborne illness incident, It ensures the model is exposed to examples where

word-level labeling results may or may not be correct, fostering a more nuanced evaluation.

• Through evaluations with varying the size of the demonstration example set (training

set for supervised learning method), we demonstrate that ICL2FID not only outperforms

traditional supervised learning approaches but also advances beyond ICL-based methods
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utilizing the same LLM model, even with a very limited number of labeled posts. It is in-

teresting to observe that its performance is in fact very close to aggregated crowd-sourced

human annotation, albeit at a significantly reduced cost, as discussed in Section 4.4. Further-

more, our investigation into the optimal number of examples for demonstration contexts has

yielded insights into balancing quality label generation against economic efficiency. These

findings highlight ICL2FID’s potential as a viable alternative for label collection in scenarios

with limited resources.

4.2 Related Works

Large Language Model and In-context Learning for The Annotation Creation

Task. Large language models (LLMs) have revolutionized natural language processing

tasks by achieving significant performance improvements [12]. One simple yet effective ap-

plication of pretrained LLMs is in-context learning (ICL), a technique where LLMs, using

a demonstration of a few examples, generate text that aligns with the given context. Here,

demonstration refers to the sample inputs and outputs provided to the model, serving as a

guide for the expected task performance [7, 11]. ICL is a training-free learning framework.

This could substantially lower computational costs associated with adapting models to new

tasks [11]. Additionally, ICL capability can be further improved through a continual train-

ing stage, model warmup, between pretraining and ICL inference [127, 128]. Warmup is an

optional procedure for ICL, which is not a focus in our study.

A notable advancement in ICL, Chain-of-Thought (CoT), introduces an intermediate

reasoning step into the demonstrations to enhance LLMs’ performance on complex tasks

by predicting both the reasoning process and the final answer [45]. This approach mirrors

the principles of multi-task learning (MTL), where models trained on multiple related tasks

simultaneously can often outperform those trained on individual tasks. The underlying con-

cept is that learning related tasks together allows the model to generalize better by leveraging
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commonalities and differences across tasks [129]. While ICL and CoT methods have been

applied to tasks like Named Entity Recognition [43], document information extraction [130],

machine translation [131], and Relation Extraction [42] recently, the exploration of leverag-

ing these techniques as part of a solution strategy for tackling the multi-level labeling task,

specifically leveraging the interconnections between labels across different levels, remains an

open problem.

Foodborne Illness Detection Dataset Labeling. Social media data has been identi-

fied as a great source of information for public health due to its timeliness and scalability.

Previously, most research in this domain focused on collecting a single class label per tweet,

specifically determining its relevance to foodborne illness events. These studies utilized

machine learning models to identify relevant Yelp reviews or tweets within specific regions

[115, 132, 133, 118, 117, 119]. However, unfortunately, most of the more detailed infor-

mation had to be retrieved manually during the inspection process. In our prior research,

we introduced TWEET-FID [4], the first publicly available annotated dataset for detecting

foodborne illness incidents at two distinct levels. TWEET-FID, curated from Twitter 2 ,

is annotated at both the tweet and word levels, with labels provided by both experts and

crowdsourced workers. By being a publically released resource, this dataset paves the way

for future research in foodborne outbreak detection.

However, the reliance on human annotators to label data presents a significant cost bar-

rier, especially for datasets of substantial size. Given that Large Language Models (LLMs)

have shown exceptional performance across numerous NLP tasks, and considering the lower

and in some cases even negligible expenses compared to hiring human annotators, investi-

gating the capabilities of LLMs for labeling tasks in foodborne illness detection presents a

promising avenue for exploration.
2Twitter has been renamed as X. The data collection were carried out when the Twitter API was accessible

for academic research.
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4.3 Our Proposed Methodology

4.3.1 Problem Definition

Let D = {xi}Ni=1 denote a dataset of social media posts collected via the Twitter API,

using keywords associated with foodborne illnesses, where N represents the total number of

posts in D. Each post xi = [xi,1, xi,2, . . . , xi,M i ] is a sequence of M i words. The dataset is

divided into a labeled set Dl = {(xl
i)} and an unlabeled set Du = {xu

i }N
u

i=1, with D being the

union of both Du and {xl
i}N

l

i=1. For all xl
i in Dl, have a mapping to a triplet (xl

i, y
l
i, s

l
i). The

post-level label yli ∈ {0, 1} indicates whether xl
i describes a foodborne illness incident (1 for

yes, 0 for no), while sli = [sli,1, s
l
i,2, . . . , s

l
i,M i ] denotes the sequence of word-level labels for all

words inside of xl
i, categorizing each word into one of five classes as detailed in Table 4.1.

Due to the high cost of obtaining human annotations, most posts remain unlabeled, leading

to a ratio of Nu

N l ≫ 1.

This study aims to identify four types of relevant entities (food, location, symptom,

and keyword) within a post, with all other words classified as "outside" these entities of

interest. Here, only entities directly associated with a foodborne illness incident are consid-

ered relevant. For instance, in the sentence “I ate an apple and it tastes great!”, the food

entity “apple” is not implicated in a potential foodborne illness incident and thus should be

classified as outside relevant entities.

In our study, we explore the feasibility of deploying a pretrained Large Language Model

(LLM), denoted as Φ(θ), to annotate the unlabeled dataset Du on both word and post

levels through in-context learning. Drawing on the concept of in-context learning—defined

in prior research [11] as the capability of language models to adapt to specific tasks through

exposure few examples—we pose the following problem: Given the labeled set Dl as the pool

of demonstration examples, can we design an ICL-based strategy that accurately annotates
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Label Definition
Food The food item that caused the potential foodborne illness inci-

dent.
Location The location where the affected person purchased or acquired the

food associated with the potential foodborne illness.
Symptom The symptom experienced by the affected person as a result of

the suspected foodborne illness.
Keyword Other relevant keyword or term associated with a foodborne ill-

nesses incident, e.g., "food poisoning".
Out of relevant entity Words that does not belong to any classes described above. Note

that mentions of entities that are not related to a foodborne illness
incident should be seen as “out of relevant entity”

Table 4.1: Definition of word level label classes.

Du?

4.3.2 Proposed Approach: ICL2FID

Next, we design ICL2FID, a framework leveraging Large Language Models (LLMs) to

annotate social media posts for foodborne illness detection on two levels. Given the com-

plexity of assigning labels at both the post and word levels—where we target the extraction

of four specific types at the word level—it becomes necessary to craft a comprehensive in-

put context for the LLM. This input must encapsulate the task description, definitions of

the four entity types, and possibly include examples to illustrate the desired output format.

Many Large Language Models (LLMs) are constrained by input and output length limits.

For instance, GPT-3.5-turbo imposes a maximum of 16,385 tokens for input and 4,096 to-

kens for output, while GPT-4 permits even fewer tokens, capping input at 8,192 tokens

[123]. This limitation becomes significant when considering the length of social media posts;

Facebook posts can extend up to 63,206 characters, X Message (formerly Twitter Message)

allows 10,000 characters, and Instagram posts can be up to 2,200 characters [134]. Given

that one English text token is approximately equivalent to four characters [135], many social

media posts fall well within these limits. However, the challenge arises in including both a
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Ask the model to extract food
entity relevant to foodborne

illness incident 

Return relevant food 
 entity label

Ask the model to
extract location entity relevant

to foodborne illness incident

Return relevant location
entity label

Ask the model to
extract symptom entity relevant

to foodborne illness incident

Return relevant symptom
entity label

Ask the model to
extract keyword entity relevant

to foodborne illness incident

Return relevant keyword
entity label

Aggregate word-level label

Ask the model to label if the post describe a
foodborne illness incident

Return post-level label 

Ask the model to verify the
extracted food entity

Return food   
 entity verification result

Ask the model to verify the
extracted location entity

 Return location
entity verification result

Ask the model to verify the
extracted symptom entity

Return symptom
entity verification result

Ask the model to verify the
extracted keyword entity

Return keyword
entity verification result

Step 3: Post-level Labeling

Step 2: Word-level Verification

Step 1: Word-level Labeling

Instruct the model to first analyze post-level relevance then identify the relevant entity

Instruct the model to first analyze the relevance of the entity then get the conclusion

Instruct the model to take word-level prediction as a reference, first analyze if the word-level
prediction is correct then predict the post-level label 

Figure 4.3: Pipeline of ICL2FID. The labeling framework is composed of three steps. Step
1 Word-level Labeling: the LLM is asked to extract relevant entities from the given post.
Step 2 Word-level Verification: the LLM verifies the prediction from the previous step and
filters out spurious entities. Step 3 Post-level Labeling: taking word-level label information
for reference, the LLM generates the post-level label for the post.

descriptive context and multiple examples for each relevant entity and post-level label within

a single input due to these token restrictions. In our experiment, we have tested to construct

the instruction to ask the model to return labeled sentences (see description in next sub-

section) for four four types of relevant entities and the post-level class. Unfortunately, we

sometimes encountered failures where the model could not return an answer due to the token

limits. To overcome this limitation, we design the annotation process as a sequence of three

distinct phases:

1. Word Level Labeling: We instruct the model Φ(θ) to identify the four types of

relevant entities for each post xu
i in the unlabeled dataset Du, conducting separate

iterations for each entity type. In this step, we leverage the Chain-of-Thought (CoT)

method [45] to guide the LLM to first consider the post’s overall relevance to foodborne



PhD Dissertation: Dongyu Zhang 71

illness incident before identifying relevant entities within;

2. Word Level Label Verification: LLM significantly suffers from the hallucination or

overprediction issue [125]. In our case, LLM has a strong inclination to overconfidently

label irrelevant words as relevant entities [43]. After extracting the relevant entities

for post xu
i , to alleviate the model hallucination issue, Φ(θ) is utilized to verify the

correctness of each extracted entity. In this verification step, the LLM is instructed to

evaluate the identified entity’s relevance to foodborne illness incident in the reasoning.

Entities which are verified as irrelevant are discarded at this step;

3. Post Level Labeling: With the post xu
i and its verified entities as context, we instruct

Φ(θ) to determine the overall post-level label. In this step, the LLM is instructed to

first analyze the word-level labeling result’s correctness then get the conclusion for the

final output.

The pipeline of ICL2FID is shown in Figure 4.3. Note that, the whole procedure is

“training free”, which means the model does not update any parameters. Since we are using

the GPT-3.5-turbo as the backbone LLM, we don’t deploy the LLM (and the embedding

model, which is detailed in the following subsection) in our local machine, thus the labeling

procedure can be done with limited computation resource.

In this design, the model is instructed to give word-level prediction at the first step.

And in this step, the model also analyze post-level relevance in the reasoning step. However,

due to the model hallucination issue, we cannot simply trust the results. In the second step,

we introduce the model to verify the word-level results, filter out irrelevant entities. At the

last step, we instruct the model to reconsider if entities from the second step does signal a

foodborne illness incident and then give the conclusion for the post-level label. Through our

design, the model is instructed to generate and verify the results from distinct point of views

- search for evidence by itself and analyzes the correctness of evidence. Which can efficiently

utilizes the interconnection between two levels of labels and mitigate hallucination issue.
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In the following sections, we delve into the methodologies for constructing prompts and

designing demonstration examples using a custom-retrieval strategy for each phase in detail.

4.3.2.1 Step 1: Word Level Labeling

Human Labeled Posts

--- --- ---

semantic
similarity

Embedding Model

Query Post

--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---

--- --- ---
--- --- ---

Semantic Similarity

(a)

Input: Me and my friend both got a taco in a bag on Tuesday and we were both extremely sick the next morning
Output: Let's think step by step. The text indicates a foodborne illness incident. The word ``taco'' in the text is a Food entity, which is a
specific food item that caused the potential foodborne illness incident.
{"label": "Me and my friend both got a ^^taco^^ in a bag on Tuesday and we were both extremely sick the next morning"}

Input: I just vomited . You would think it's because of food poisoning. But no folks , it's because I'm just anxious about my job.
Output: Let's think step by step. The text does not indicate a foodborne illness incident. So, no Food entity in the text is relevant to
foodborne illness incident.
{"label": "I just vomited . You would think it's because of food poisoning. But no folks , it's because I'm just anxious about my job."}

Input: @USER LOL I know ! I've had a stomach bug or food poisoning since yesterday afternoon
Output: Let's think step by step. The text indicates a foodborne illness incident. However, no Food entity in the text is relevant to
foodborne illness incident.
{"label": "@USER LOL I know ! I've had a stomach bug or food poisoning since yesterday afternoon"}
......

You are an expert at extracting Food entities that are related to foodborne illness incident from text. In the given text, your task is to label
Food entities that are specific food item that caused the potential foodborne illness incident. Note that you should surround the extracted
entities in the text with "^^" and "^^". Use the following examples as a guide for your predictions and format your responses similarly.

Your answer will consist of an explanation, followed by the correct labeled sentence. The last line of the answer should always be JSON
format with one key: {"label": "the correct labeled sentence"}. Note that if the given text does not include any Food entity related to
foodborne illness, your labeled sentence will be the input text.

Some examples with their output answers are provided below:

Now I want you to label the following example:
Input: I ate fried wing and got food poisoning bro . I do not wish this feeling upon anyone .
Almost done driving for the day
Output: Let's think step by step.

Reasoning starts from analyzing if the tweet indicates a foodborne illness incident

1.Task Description

2.Demonstration Examples

3.Query Tweet

4.Model Output
The text indicates a foodborne illness incident. The word "fired wing" in the text is a Food entity, which is a specific food item
that caused the potential foodborne illness incident.
{"label": "Yes"}

(b)

Figure 4.4: An overview of word-level labeling step. Left (4.4a): Semantic similarity example
retrieval strategy. Right (4.4b): an example of word-level labeling prompt. Content above
the bold black line is the input to the LLM, and the content below the bold black line is the
LLM’s output. The input composes of three parts: task description, demonstration examples
and query post. Note that there could be more than three posts as demonstration examples.

In the word-level labeling step, the LLM is instructed to identify four types of relevant

entities from the given post. As we discussed in last subsection, due to input and output

length restrictions, it is impractical to include descriptions and sufficient demonstrations for

all four entity types in a single prompt. Consequently, for each query post, we create four

separate prompts, each tailored to one of the entity types.
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Figure 4.4b presents an example of word-level labeling. The prompt is divided into three

sections. The initial section provides a task overview, instructing the model to identify food

entities associated with foodborne illness incidents. The opening sentences outline the task,

followed by a description of the expected answer format. Drawing inspiration from GPT-

NER [43], we suggest that the LLM’s output adhere to a specific format. Namely, if the

query post lacks any relevant food entities, Φ(θ) simply replicates the query post xu
i ; while

for any relevant food entity or entities within the post, we encase them in special tokens

“ˆˆ” to highlight their presence. This approach, as discussed in [43], effectively narrows

the gap between traditional sequence labeling tasks and generative modeling. For a given

sentence “I ate chicken and got diarrhea”. The intuitive format of word-level label sequence

is: “O O FOOD O O SYMPTOM”, where “O” denotes “outside” relevant entity, “FOOD”,

“SYMPTOM” denote relevant food and symptom entity respectively. This intuitive format

requires the model to learn the alignment between word and label, which add up the difficulty

for the model to generate the label sequence. But this new output format design from [43]

simplifies the model’s task to merely marking the locations of the extracted entities while

replicating the rest of the text within the same context of its sentence structure.

In the original work in [43], “@@” and “##” were used to denote extracted entities, but

given the frequent use of “@” and “#” in social media posts, in our work, we instead select

“ˆ” as label notation to minimize confusion.

In the task description’s third sentence, we specify the expected output format. However,

drawing inspiration from the Chain of Thought (CoT) technique [45], we encourage the

model to engage in a reasoning process before providing an answer. As illustrated in the

demonstration examples in 4.4b. The model first is asked to assesses the overall relevance of

the given post to a foodborne illness incident and then identifies the relevant entities within

the post. Upon reaching a conclusion, it formats the output according to our specification.

The concluding sentence of the task description signals that next we will provide a few-shot

demonstration to guide the model’s response via some illustrative examples.
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Research has demonstrated that examples that are semantically closely related to the

query post can notably enhance model performance [136, 137, 43]. For this step, we employ

the semantic similarity selection (SSS) strategy [136] to carefully select the most suitable

examples from our labeled subset Dl. Figure 4.4a details this process, where a embedding

model processes all examples in the labeled set Dl to obtain their corresponding embedding

vectors, which represent the post’s semantic content. All these embedding can be collected

and stored in memory before the labeling procedure. Then the embedding model process the

query post to obtain its embedding vector. We then identify and retrieve the examples most

semantically aligned with the query post, enriching the model’s context for more accurate

labeling. More implementation details for this similarity search procedure are referred to

[138].

4.3.2.2 Word Level Label Verification

LLMs often grapple with hallucination or overprediction issues as illustrated in [125].

This problem can be particularly pronounced in our context of post-level labeling, where

the accuracy of entity extraction as an intermediate step in the overall prediction process is

crucial. Our task demands that the model identifies entities specifically related to foodborne

illness incidents. However, a post might mention similar entities unrelated to such incidents.

For instance, in the previously mentioned example, "I ate an apple and it tastes great!", the

word "apple" might be mistakenly tagged as a relevant food entity despite its irrelevance to

a foodborne illness. This may occur simply because an apple is indeed a food entity; so in

that sense matches the desired outcome to some degree.

To mitigate this issue of model hallucination in our FID context and to ensure spurious

entities do not compromise post-level predictions, we adopt a word-level label verification

step inspired by GPT-NER [43] to filter out irrelevant entities extracted in the first step.

This verification step can give the model a chance to consider from a distinct perspectives
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Human Labeled Posts

--- --- ---

semantic
similarity

Embedding Model

Query Post

--- --- ---
--- --- ---

--- --- ---
--- --- ---
--- --- ---
--- --- ---

--- --- ---
--- --- ---

no relevant food entity

has relevant food entity

Existence Diversity Similarity

(a)

Now I want you to label the following example:
Context: I ate fried wing and got food poisoning bro . I do not wish this feeling upon anyone .
Question: Do you think the word "fried wing" in the given text is a Food entity that is specific food item that caused the potential
foodborne illness incident?
Answer: Let's think step by step.

Reasoning starts from analyzing if the word is related to a foodborne illness incident

1.Task Description

2.Demonstration Examples

3.Query Tweet

You are an expert at identifying Food entities that are related to foodborne illness incident from text. In the given text, your task is to
verify if a given word is a Food entity that is specific food item that caused the potential foodborne illness incident in the given text. Use
the following examples as a guide for your analysis and format your responses similarly.

Your answer will consist of an explanation, followed by the correct answer ("Yes" or "No"). Please answer with "Yes" if the given word is
a Food entity that is specific food item that caused the potential foodborne illness incident in the given text, otherwise answer with "No".
The last line of the response should always be JSON format with one key: {"label": "the correct answer"}.

Some examples with their output answers are provided below:

Context: I' m eating reheated calamari 2 days out of date, am i trying to get food poisoning ? do i have a death wish ? ? maybe.
Question: Do you think the word "reheated calamari" in the given text is a Food entity that is specific food item that caused the potential
foodborne illness incident ?
Answer: Let's think step by step. The word "reheated calamari" does not cause a potential foodborne illness incident.
{"label": "No"}

Context: Me and my friend both got a taco in a bag on Tuesday and we were both extremely sick the next morning
Question: Do you think the word "taco" in the given text is a Food entity that is specific food item that caused the potential foodborne
illness incident?
Answer: Let's think step by step. The word "taco" is a specific food item that caused the potential foodborne illness incident.
{"label": "Yes"}

......

4.Model Output
The word "fired wing" is a specific food item that caused the potential foodborne illness incident.
{"label": "Yes"}

(b)

Figure 4.5: An overview of word-level verification step. Left (4.5a): Existence diversity
similarity example retrieval strategy. This method provides the model with both positive
(extracted relevant entity result is correct) and negative (extracted relevant entity result is
not correct) examples. Right (4.5b): an example of word-level verification prompt. Content
above the bold black line is the input to the LLM, and the content below the bold black line
is the LLM’s output. The input composes of three parts: task description, demonstration
examples and query post. Note that in the prompt there could be more than two posts as
demonstration examples.

whether the previously extracted entity is truly related to a foodborne illness incident. This

intermediate step requires the model to assess the relevance of entities identified in the

preceding step. Figure 4.5b illustrates the prompt used for this verification. Similar to the

previous stage, the prompt is divided into three sections. In this step, we apply the Chain

of Thought (CoT) method, prompting the model to analyze whether the identified word is

indeed a type of entity related to a foodborne illness, followed by a simple "yes" or "no"

response. Entities verified as "yes" are retained, while those receiving a "no" are excluded.

If the first labeling step is akin to asking a student to solve for the unknown in an equation,

this verification step is comparable to having the student substitute the value of the unknown
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back into the equation to verify if the equality holds true. This helps ensure that relevant

entities are more likely returned and thus will influence the final post-level label.

Figure 4.5b displays a series of demonstration examples (in the orange box) for the food

entity verification task. All these demonstration examples are retrieved from the labeled set

Dl. The questions for each example are constructed based on their word-level labels. We

design a standardized template that then is utilized to compose all these questions, namely:

“Do you think the word ENTITY_WORD in the given text is a Food entity that is the specific

food item that caused the potential foodborne illness incident?” with ENTITY_WORD, the

placeholder. That is, if the post contains a relevant food entity, this entity is inserted as

the ENTITY_WORD in the question template, and the corresponding response is “Yes”.

Conversely, if the post lacks a relevant food entity, a random text span from the post is used

as ENTITY_WORD, and the answer is “No”.

Recall that for the word-level labeling step, we employed a semantic similarity selection

strategy to select promising examples. However, utilizing this same method at this verifica-

tion step could lead to selecting an identical set of posts as demonstration examples. Worse

yet, if all demonstration examples mention food entities, the model might be biased towards

responding with “Yes”, even if the food entity extracted in the previous step doesn’t pertain

to a foodborne illness.

To address this, we now design an example retrieval strategy for this verification step,

termed Existence Diversity Similarity that overcomes this challenge. First, for this food

entity verification task, we initially divide all labeled instances in Dl into two subsets:

Dl
f = {xl

i|∃sli,j ∈ sli, s
l
i,j = Food}, comprising posts with relevant food entities, and Dl

uf =

{xl
i|∀sli,j ∈ sli, s

l
i,j ̸= Food}, containing posts without relevant food entities. We then apply

the semantic similarity method to retrieve an equal number of examples from both Dl
f and

from Dl
uf . This approach ensures the prompt includes both positive and negative examples

and an equal number of both, guiding the model to recognize that it can either confirm or
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refute the entity identifications from the preceding step.

4.3.2.3 Post Level Labeling

Human Labeled Posts

--- --- ---

semantic
similarity

Embedding Model

Query Post

--- --- ---
--- --- ---

--- --- ---
--- --- ---

--- --- ---
--- --- ---

--- --- ---
--- --- ---

has relevant entity

no relevant entity
(augmented)

has relevant entity
(augmented)

no relevant entity

Augmented Diversity Similarity

--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---
--- --- ---

(a)

Now I want you to label the following example:
Context: I ate fried wing and got food poisoning bro . I do not wish this feeling upon anyone .
Finding: The word "fried wing" in the given text is a Food entity that is specific food item that caused the potential foodborne illness
incident.
Answer: Let's think step by step.

Reasoning starts from analyzing if the finding is correct or not.

1.Task Description

2.Demonstration Examples

3.Query Tweet

Context: @USER food poisoning is the worst! Hope you get better!
Finding: No word in the text is related to foodborne illness incident.
Answer: Let's think step by step. The finding is not correct. Actually, there are some entities in the text related to foodborne illness
incident. So, the text indicates a foodborne illness incident.
{"label": "Yes"}

Context: @USER Awww :( I hope it clears up. I just got food poisoning I think ~ throwing up all morning :/
Finding: The word "throwing up" in the text is a Symptom entity, which is a specific symptom experienced by the affected person as a
result of the suspected foodborne illness. The word "food poisoning" in the text is a Keyword entity, which is other relevant keyword or
term associated with foodborne illnesses, such as "food poisoning".
Answer: Let's think step by step. As the finding suggests, there are some entities in the text related to foodborne illness incident. So, the
text indicates a foodborne illness incident.
{"label": "Yes"}

Context: @USER Poor thing. Of the few times I've been sick, covid was the WORST, ever #deadly
Finding: The word "sick" in the text is a Symptom entity, which is a specific symptom experienced by the affected person as a result of
the suspected foodborne illness.
Answer: Let's think step by step. The finding is not correct. Actually, there is no entity in the text related to foodborne illness incident. So,
the text does not indicate a foodborne illness incident.
{"label": "No"}

Context: Think I might have gotten a mild case of food-poisoning today - so that's been super fun.
Finding: No word in the text is related to foodborne illness incident.
Answer: Let's think step by step. As the finding suggests. there is no entity in the text related to foodborne illness incident. So, the text
does not indicate a foodborne illness incident.
{"label": "No"}

......

You are an expert at identifying foodborne illness incident information. For the given text, your task is to evaluate the text to determine if
it describes a potential foodborne illness event.  Another model has extracted some entities that are related to foodborne illness incident,
you can take it as a reference. But the finding might be incorrect. Use the following examples as a guide for your predictions and format
your responses similarly.

Your answer will consist of an explanation, followed by the correct answer ("Yes" or "No").Please answer with "Yes"
if it describes a potential foodborne illness event, otherwise answer with "No".The last line of the response 
should always be JSON format with one key: {"label": "the correct answer"}.

Some examples with their output answers are provided below:

4.Model Output
As the finding suggests, there are some entities in the text related to foodborne illness incident. So, the text indicates a foodborne
illness incident.
{"label": "Yes"}

(b)

Figure 4.6: An overview of post-level labeling step. Left (4.6a): Augmented diversity similar-
ity example retrieval strategy. This method filps some examples’ word level label to provide
the model with both positive (word-level label result is correct) and negative (word-level
label result is incorrect) examples. Right (4.6b): An example of post-level labeling prompt.
The prompt composes of three parts: task description, demonstration examples and query
post. Content above the bold black line is the input to the LLM, and the content below the
bold black line is the LLM’s output. The input composes of three parts: task description,
demonstration examples and query post. Note that in the real prompt there could be more
than four posts as demonstration examples.
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After the verification step, we now aggregate the confirmed relevant entities across the

four categories into one single set per post. This aggregated data then is leveraged for the

construction of the prompt for the subsequent post-level labeling step. Here, the model is

tasked with determining whether the post indicates a foodborne illness. Figure 4.6b presents

a prompt example for realizing this step. Utilizing the Chain of Thought (CoT) method,

the model is directed to first evaluate related entities information (referred to as "findings"

in the prompt) from earlier steps, analyze if these entities truly signals a foodborne illness

incident, and then conclude whether the post describes a foodborne illness. This approach

allows the model to reference the word-level labeling outcomes as a basis for generating the

post-level label without blindly follow these earlier results. The model retains the power to

revise prior conclusions based on its subsequent analysis.

In this labeling step, we want to present the model two scenarios: correct (positive)

and word-level label results is not correct (negative). However, in our labeled set Dl, all

instances’ word-level result is correct. To address this issue, we introduce an additional

example retrieval strategy named Augmented Diversity Similarity. As depicted in Figure

4.6a, we categorize instances in Dl based on their post-level labels into two groups: Dl
1 =

(xl
i, y

l
i, s

l
i)|yli = 1 and Dl

0 = (xl
i, y

l
i, s

l
i)|yli = 0. We then randomly augment 50% of posts from

both Dl
1 and Dl

0 with new word-level labels. For the selected post in Dl
0, some text spans in

the post are randomly selected and assigned with arbitrary relevant entity labels. Whereas

for the chosen posts in Dl
1, we will mark every word’s corresponding word-level label as

belonging to the “out of entity” type. Through this way, we create negative examples which

can be used in the demonstration. After the augmentation process, demonstration examples

are again selected based on semantic similarity. Since we flipped 50% of word-level labels,

for each query post, there would be roughly 50% of examples are negative cases.

In Figure 4.6b, both the first and third demonstration examples stem from this aug-

mentation process. The first post says: “@USER food poisoning is the worst! Hope you get

better!” In this example, "food poisoning" should be identified as a relevant keyword entity.
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In contrast, the “finding” mistakenly claims “No word in the text is related to foodborne

illness incident”, which the example answer corrects by first emphasizing the presence of

relevant keywords, then drawing the conclusion that this text indicates a foodborne illness

incident. In the third example, the post “@USER Poor thing. Of the few times I’ve been

sick, covid was the WORST, ever #deadly” does not indicate a foodborne illness incident.

Further, no word in the text is related to a foodborne illness incident. The word “sick”

is wrongly labeled as a symptom entity that is related to foodborne illness incident. For

these negative examples, the corresponding answers in demonstration start from refuting

the word-level label results then get the conclusion on post-level label. These augmented

examples serve to remind the model that initial findings are not infallibly accurate, urging

a thorough analysis of the post to reach an accurate conclusion. This design strategically

reduces the likelihood of the model being misled by incorrect word-level labeling results.

4.4 Experimental Study

This section assesses the effectiveness of our proposed method using the TWEET-FID

dataset [4] and compares it against a variety of baseline approaches. Additionally, we conduct

an ablation study evaluating our method alongside several of its variants to highlight the

significance of each component within our framework.

Social Media Dataset. In our previous research, we have developed and publically

released the TWEET-FID dataset [4], which includes 1,362 (33%) relevant and 2,760 (67%)

irrelevant tweets related to foodborne illness. Each tweet has been labeled by both experts

and through a crowdsourcing process, creating a richly annotated resource. As detailed in

Chapter 1.1.1 and in Section 4.1, during crowdsourcing label collection procedure, we have

rejected some low-quality crowdsourced annotations, and aggregate remained annotation

per tweet to improve its quality compared to a single crowdsourced annotation. The dataset

was segmented into training, validation, and testing sets with the aim to make all three
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sets have the same balance of positive (tweet indicates foodborne illness incident) versus

negative (tweet does not indicate foodborne illness incident) determined based on expert

labels. That is, 1,088 relevant and 2,210 irrelevant tweets are designated for training, and

both the validation and test sets comprise 137 relevant and 275 irrelevant tweets each.

For our current LLM-based study, the validation set serves as the demonstration example

set Dl, while the training and test sets are merged to form the unlabeled set Du. We

only use the training and test sets label for performance evaluation. To ensure the model

isn’t overwhelmed by excessively long tweets and reduce labeling cost, we excluded tweets

exceeding 42 words in length. This cutoff represents the third quartile of tweet lengths within

our demonstration example set, leaving 311 tweets for use as demonstration examples. As

discussed in Section 4.4.2, we can reduce the labeling cost without affect the labeling quality.

Note that we do not exclude any tweet in the unlabeled set Du since our goal to annotate

all of them.

Experimental Setup. Our experiments leverage the gpt-3.5-turbo [122] as the pri-

mary LLM, chosen for its balance between performance and cost-efficiency, making it prefer-

able to the more expensive GPT-4 for our purposes. Additionally, we utilize the Text-

embedding-ada-002-v2 [139] model, recognized as the most advanced second-generation em-

bedding model available. We configured gpt-3.5-turbo with a temperature setting of 0.1 as

recommended in [140] to ensure precision in responses. Our methodology includes the use of

8 demonstration examples in each prompt, with a detailed discussion on selecting the optimal

number of examples provided in Section 4.4.4. The entire labeling framework is developed

using Python 3.9.12, incorporating the AutoLabel module [141] for creating demonstration

contexts and facilitating interactions with the LLM and the embedding model via the Ope-

nAI API [142]. Tasks such as label format transformation and aggregation, saving labeling

results, evaluation, and visualization are executed using Pandas [143], Sklearn [144], SeqEval

[145], Matplotlib [146], and other Python modules. The code and additional implementation

details will be made available on GitHub following the publication of our work.
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For both word and post level analysis, we employ F1 score and balanced accuracy (B.Acc)

[147] to measure each method’s performance. B.Acc s particularly effective for imbalanced

datasets, where traditional accuracy metrics may provide a skewed view of a method’s ef-

fectiveness. These metrics collectively offer a multifaceted perspective on the performance

of each method, accommodating for the challenges posed by imbalanced class distributions.

Given budgetary constraints, we conducted a single implementation of all methods based on

gpt-3.5-turbo and employed the bootstrap resampling technique to estimate the mean and

standard deviation of performance scores across the unlabeled set.

Baselines. Our study incorporates a range of widely-used supervised learning models as

baseline comparisons. These supervised learning model are either trained or fine-tuned with

demonstration example set Du. That is ensure that, for this dataset, these methods’ knowl-

edge scope of these methods are within the demonstration example set. Since our ICL-based

solution can only select demonstration examples from Du. Supervised learning methods and

ICL-based methods are therefore comparable. To evaluate if our proposed method could be

an viable alternative for labeling collection. We also compare our method performance and

cost against aggregated crowdsourced annotations. Additionally, we conduct an ablation

study and examine key variants of ICL2FID to assess the impact of cross-level information

prompting, the verification step, example retrieval strategies, exclusion of long demonstration

example, and the order of labeling steps.

Supervised Learning Method. As described above, these methods are either trained

or fine-tuned on the entire demonstration example set:

1. RoBERTa. Proposed by Liu et al. [53], RoBERTa refines the BERT [52] pre-training

procedure by eliminating the next-sentence prediction task and optimizing training

with larger mini-batches and learning rates. Outperforming BERT and other state-of-

the-art model across multiple benchmarks, RoBERTa is implemented in both indepen-

dent and joint versions. The independent version predicts at one of the levels, while
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the joint version simultaneously predicts at both the word and post levels. Word-level

predictions utilize a linear classification layer over each token’s hidden state to predict

its corresponding relevant entity class label. For post-level prediction, RoBERTa em-

ploys a classification head atop the [CLS] token’s hidden state to predict its post-level

relevance label. The independent variant only features with one of the classification

heads described above. For the joint variant, it features two classification heads, each

dedicated to a specific task.

2. BERTweet. Introduced by [148], BERTweet is the inaugural large-scale pre-trained

language model for English tweets, adhering to the BERT-base architecture [52] and

RoBERTa’s pre-training methodology [53]. Outperforming previous models on tweet

dataset benchmarks [148], The architecture of BERTweet for two-level in single level

are the same with the RoBERTa.

3. BiLSTM. Bidirectional LSTM processes sequences using pre-trained GloVe embed-

dings3. The BiLSTM’s hidden states feed into a classifier for prediction. Like RoBERTa,

BiLSTM is adapted for both independent and joint version. For post-level predictions,

it uses the concatenated final hidden states from both directions, while word-level

predictions employ the hidden states from each word. The joint version assigns two

classification heads to address each task independently.

Aggregated Human Annotation. In our previous research [4], we collected labels

from crowdsource workers for each tweet on a crowdsourcing platform, with each tweet

receiving five labels per level. We filtered out low-quality labels, retaining three per level for

analysis. To aggregate these labels, we utilized two approaches: majority voting (MV) and

the Bayesian sequence combination (BSC) method as proposed in [149]. MV was applied

at both the word and tweet levels, while BSC was specifically employed for word-level label

aggregation due to its suitability for sequence label tasks. By evaluating the quality and
3We utilize GloVe embeddings from the Common Crawl dataset, comprising 840 billion tokens and 2.2

million vocabularies. https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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cost of labels produced by ICL2FID against those aggregated from crowdsourcing, our goal

is to ascertain if ICL2FID can equal or exceed human annotation quality, thereby presenting

a cost-efficient and effective approach for generating labels.

ICL2FID variants. To validate the impact of individual components, we introduced

several variants of ICL2FID for an ablation study:

1. ICL2FID -Independent. This variant isolates the word and post-level labeling steps

as two independent tasks. That is, we do not utilize the word-level labeling information

to inform the post-level labeling. For instance, in Figure 4.6b, it excludes the "finding"

and the related reasoning step in demonstration examples and the query tweet, with

adjustments made to the task description to reflect this change. It thus also omits

the instruction for models to consider post-level relevance before making word-level

predictions. In Figure 4.4b, it omits the reasoning step highlighted in yellow color in

demonstration example, with the task description alternation to match the change.

This variant still remains the step 2 verification.

2. ICL2FID w/o Step 2. Omitting the word-level label verification step, this variant

directly uses word-level labeling results in the final step without prior verification.

3. ICL2FID w/ Extra Verification Step. This variant add one more word-level/post-

level verification step after the step 3 in original ICL2FID.

4. ICL2FID w/ Semantic Similarity (SS) only. Here, the example retrieval strategy

for all steps is limited to the semantic similarity strategy. The existence diversity

similarity and augmented diversity similarity strategies are not employed in Steps 2

and 3. Consequently, for Step 2, there’s no assurance that demonstration examples

for a query will include both cases where the entity extracted from Step 1 is correctly

identified and cases where it is incorrectly identified. In Step 3, without negative cases

in the demonstration examples (where the word-level label result is incorrect), the
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model is not prompted to assess the accuracy of word-level labels. Instead, it proceeds

based on the assumption that the word-level labels are correct to generate the post-

level label. The task description and demonstration examples (refer to Figure 4.6b)

are adjusted accordingly to reflect these changes.

5. ICL2FID w/ Random Retrieval (RR) only. Here, the example retrieval strategy

for all steps is limited to the random selection strategy. This approach does not ensure

that the examples chosen for demonstration are similar to the query post. Although

augmentation is employed in step 3, there is no assurance that a balanced mix of

positive and negative cases will be present in the demonstration examples for steps 2

and 3.

6. ICL2FID w/ All Labeled Data. This variant employs the same framework as the

original ICL2FID. The sole distinction is that it utilizes a labeled set comprising all

labeled tweets, including those exceeding 42 words in length, without any exclusions.

7. ICL2FID Reversed Order. This variant reverses the order of operations, starting

with post-level labeling and verification before proceeding to the word-level labeling.

Mirroring the original ICL2FID design, it instructs the model to analyze word-level

entity information for post-level labeling first. The post-level results are then used as

a reference for word-level labeling, ensuring a thorough and informed analysis across

levels.

4.4.1 Experimental Results

Comparison of ICL2FID with Baseline Methods. Table 4.2 demonstrates that our

method, ICL2FID, surpasses all non-human baselines in both word and post-level predictions.

Unlike supervised learning methods that require updates to model parameters to tune the

pretrained language models, ICL2FID can produce high-quality labels without such a model
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Learning Model Method Word-level Post-level
F1 B.Acc F1 B.Acc

Supervised BERTweet Independent 0.1873 ± 0.0051 0.661 ± 0.009 0.6077 ± 0.0122 0.7113 ± 0.0076
Supervised RoBERTa Independent 0.2588 ± 0.0062 0.701 ± 0.008 0.6912 ± 0.0106 0.7715 ± 0.0075
Supervised BiLSTM Independent 0.3638 ± 0.0057 0.688 ± 0.007 0.6361 ± 0.0105 0.7280 ± 0.0069
Supervised BERTweet Joint 0.1808 ± 0.0002 0.612 ± 0.006 0.4742 ± 0.0102 0.6278 ± 0.0062
Supervised RoBERTa Joint 0.2172 ± 0.0055 0.625 ± 0.008 0.5252 ± 0.0118 0.6414 ± 0.0079
Supervised BiLSTM Joint 0.3336 ± 0.0068 0.675 ± 0.009 0.5911 ± 0.0112 0.6934 ± 0.0076

In Context gpt-3.5-turbo ICL2FID Independent 0.5609 ± 0.0092 0.6693 ± 0.0114 0.6819 ± 0.0097 0.7682 ± 0.0060
In Context gpt-3.5-turbo ICL2FID 0.6010 ± 0.0088 0.6760 ± 0.0110 0.7171 ± 0.0093 0.8000 ± 0.0058

Human Crowdsourcing MV 0.5908 ± 0.0146 0.6701 ± 0.0160 0.7759 ± 0.0082 0.8515 ± 0.0051
Human Crowdsourcing BSC 0.5414 ± 0.0141 0.6711 ± 0.0157 N/A N/A

Table 4.2: Performance comparison against SOTA methods on the Tweet-FID dataset. Bold
scores are the highest, and italic scores the second highest in each metric.

learning and/or fine-tuning step. This ICL2FID Independent also demonstrates superior

performance compared to other supervised learning methods, showcasing the impressive

capabilities of GPT-3.5-turbo. GPT-3.5-turbo benefits from extensive pretraining on a larger

dataset, which endows it with robust in-context learning abilities not present in traditional

language models.

Comparison of ICL2FID with Human Labelers. Remarkably, our model’s perfor-

mance closely rivals that of aggregated human labels and even exceeds word-level labels

aggregated via both the BSC and the MV method. The cost-effectiveness of ICL2FID is

also notable: while crowdsourcing labels costs approximately $0.50 per tweet, labeling with

GPT-3.5-turbo costs about $0.0005 to $0.001 per tweet, factoring in both input and output

tokens as detailed in [126]. Additionally, obtaining labels from human crowdsourcers can

take several days to weeks, whereas ICL2FID, utilizing the OpenAI API, can process labels

within a few hours. Given the significant time and financial costs associated with gather-

ing human labels through crowdsourcing, this result thus indicates that ICL2FID may be

offering a valuable alternative for label generation in resource-constrained scenarios.
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Model Method Word-level Post-level
F1 B.Acc F1 B.Acc

gpt-3.5-turbo ICL2FID Independent 0.5609 ± 0.0092 0.6693 ± 0.0114 0.6819 ± 0.0097 0.7682 ± 0.0060
gpt-3.5-turbo ICL2FID w/o Step 2 0.5031 ± 0.0087 0.6848 ± 0.0106 0.7051 ± 0.0095 0.7858 ± 0.0066
gpt-3.5-turbo ICL2FID w/o Extra Verification Step 0.5963 ± 0.0089 0.6551 ± 0.0114 0.6290 ± 0.0098 0.7147 ± 0.0075
gpt-3.5-turbo ICL2FID w/ SS only 0.5913 ± 0.0088 0.6609 ± 0.0112 0.6935 ± 0.0100 0.7771 ± 0.0065
gpt-3.5-turbo ICL2FID w/ Random Retrieval 0.4992 ± 0.0083 0.4398 ± 0.0097 0.7101 ± 0.0092 0.7853 ± 0.0065
gpt-3.5-turbo ICL2FID w/ All Labeled Data 0.5957 ± 0.0090 0.6634 ± 0.0110 0.7058 ± 0.0095 0.7897 ± 0.0062
gpt-3.5-turbo ICL2FID Reversed Order 0.5571 ± 0.0088 0.5699 ± 0.0116 0.6816 ± 0.0116 0.7628 ± 0.0079
gpt-3.5-turbo ICL2FID 0.6010 ± 0.0088 0.6760 ± 0.0110 0.7171 ± 0.0093 0.8000 ± 0.0058

Table 4.3: Ablation study of ICL2FID on the Tweet-FID dataset. Bold scores are the
highest, and italic scores the second highest in each metric.

4.4.2 Ablation Study of ICL2FID

As shown in Table 4.3, ICL2FID independent variant highlights the benefits of leverag-

ing the connection between post and word-level labels to enhance model performance. The

significant difference in word-level F1 scores with and without the verification step empha-

sizes the critical role of word-level verification in improving label accuracy and minimizing

the impact of erroneous word-level predictions on post-level outcomes. Word-level B.Acc

is the average of recall rate for all type entities, ICL2FID’s word-level B.Acc is a little bit

lower than the variant without verification step because ICL2FID filtered out few relevant

entities in the verification step. Interestingly, the variant incorporating additional verifica-

tion steps performs worse than the original ICL2FID, suggesting that further verification

and rectification do not necessarily lead to enhanced labeling outcomes.

The variant relying solely on semantic similarity for example retrieval slightly performs

below that with all similarity selection strategies at both levels, suggesting that our intro-

duced Existence Diversity Similarity and Augmented Diversity Similarity methods effectively

reduce example set bias and boost model performance. The variant relying on random re-

trieval performs worse on word-level labeling, indicating that demonstration example similar

to the query text enhances model performance. This variant’s post-level performance is close

to original ICL2FID, since it still has the augmented negative examples in the post-level la-

beling step, which can guide the model to first carefully verify the word-level labeling results
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then get the post-level conclusion.

By comparing ICL2FID with its variant using all labeled data, we can conclude that

removing excessively long tweet can reduce labeling cost and improve the overall performance.

Additionally, the disparity in word-level F1 and B.Acc between ICL2FID and its reversed-

order variant underscores the effectiveness of leveraging word-level labeling for the subsequent

post level inference. This may be so because in scenarios indicating a foodborne illness, the

presence of multiple relevant entities within a post can provide strong clues for post-level

labeling, even if some entities are overlooked. However, incorrect initial post-level predictions

in the reversed-order variant may adversely affect subsequent word-level labeling, leading to

the identification of incorrect entities in cases of false positives or missing entities in cases of

false negatives.
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Figure 4.7: Performance comparison against SOTA methods under varying size of demon-
stration example set.
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4.4.3 Effect of Size of Demonstration Example Set

To assess the resilience of our method ICL2FID in scenarios with an extremely limited

number of labeled data, we conducted experiments varying the size of the demonstration

example set. This was achieved by randomly selecting a certain sized subset of tweets from

the overall example set. As depicted in Figure 4.7, the X-axis percentage values indicate

the proportion of tweets retained for use as demonstration examples. Our findings reveal

that ICL2FID maintains fairly consistent performance across various sizes of the demon-

stration example set as we look from left to right, i.e., we decrease the number of examples

from 311 to 39. In contrast, the effectiveness of other supervised learning methods declines

more significantly as the size of the demonstration example set decreases. The performance

of ICL2FID independent variant is robust but it is worse than the original ICL2FID. This

observation underscores ICL2FID’s capability to produce high-quality labels even when con-

fronted with a small number of labeled tweets, highlighting its adaptability and efficiency in

label generation under constrained conditions.
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Figure 4.8: Performance of ICL2FID under varying number of examples included in a demon-
stration context.
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4.4.4 Effect of Number of Demonstration Examples

Figure 4.8 showcases the performance of ICL2FID across varying quantities of demon-

stration examples. The data indicate a marked improvement in ICL2FID’s effectiveness on

both word-level and post-level tasks as the number of included examples is augmented, with

performance plateauing beyond the inclusion of 8 examples. Given that these examples con-

stitute the majority of the input context and that additional examples would significantly

increase the input size, it is pragmatic to select 8 as the optimal number of examples for our

methodology.

4.5 Conclusion

In this work, we introduce ICL2FID, a pioneering labeling framework that utilizes LLM

to annotate posts with two-level labels aimed at detecting foodborne illnesses. ICL2FID

incorporates several innovative strategies in order to leverage the semantic interrelationships

between the two-leveled label structure. One key idea includes the utilization of the the

CoT method for the initial word-level labeling task ICL2FID to guide the LLM to first

access the post’s overall relevance to foodborne illness incidents before identifying relevant

entities within. Furthermore, to avoid the propagation and amplification of potential errors

across these two levels, the strategy inserts the word-level label verification step that aims

to verify the validity of each entity’s relevance to the foodborne illness incident. Irrelevant

entity are discarded, preventing them from influencing the subsequent labeling outcomes.

Most importantly, equipped with the outcome of the word-level labeling task, supported by

an instructing for the model to verify these results, the model is asked to infer whether the

post indicates a foodborne illness incident. At each step, ICL2FID employs a small set of

labeled posts as demonstration examples. Several example selection strategies are employed

at each step to ensure a varied selection of posts and labels. This approach is designed to
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prevent the model from being exposed to very similar or even the same data repeatedly,

thereby minimizing potential biases.

ICL2FID capitalizes on the intricate relationship between the post and the word levels.

In addition, it also effectively counters model hallucination, resulting in performance that

surpasses existing methodologies. The labels generated by ICL2FID closely rival the quality

of crowd-sourced human annotation, even with a markedly limited dataset. Note that the

human crowd-source users also had undergone a training process where they were shown

and explained examples of labeled posts. This demonstrates ICL2FID’s capability as an

efficient alternative for label collection, particularly in resource-constrained environments.

It thus highlights its potential to advance the field of public health surveillance through

social media.

Limitations. In this study, we experimented with various Large Language Models

(LLMs) besides GPT-3.5-turbo as the foundational models for our framework, notably,

Llama2 [9] and Refuel-LLM [150]. Although these models showed promise in information

retrieval tasks, their performance was relatively inconsistent. Specifically, they sometimes

struggled to comprehend our instructions, producing outputs that did not adhere to the

desired format and were challenging to process further. Consequently, we opted for GPT-

3.5-turbo as our primary model. A compelling avenue for future research would be devising

strategies to effectively prompt LLMs to generate labels that strictly conform to the specified

format, enhancing the utility and applicability of LLM-based frameworks in complex data

annotation tasks.



Chapter 5

Conclusion

5.1 Summary of Contributions

In summary, my dissertation endeavors to navigate the challenges arising from incom-

plete, noisy, and multi-level labeled datasets. The dissertation is structured around three

directions: 1) learning from two-level labeled datasets with one level having complete labels

and the other having incomplete labels, 2) learning from datasets with noisy labels, and 3)

in context learning of two-level labels when given a small number of labeled examples only.

For the first research direction, I explore the task of explainable Text Classification with

Limited Human Attention Supervision. This task presents a set of training documents, each

tagged with a classification label, with a smaller subset also bearing fine-grained word-level

labels (HAMs). We introduce the open problem of explainable text classification with lim-

ited human attention supervision, given the scarcity of human attention maps (HAMs). Our

proposed solution comprises two key components: a human-like attention learner and a con-

textualized representation, driven by a specially-designed joint loss function. This function

harmonizes the supervision signals from both human-like attention generation and document

classification tasks, despite their different numbers of labels across training instances.

91
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Addressing the second research direction with task 2, we introduce CoLafier, a novel

framework for learning with noisy labels. This framework consists of two central modules:

the LID-based noisy label discriminator (LID-dis) and the LID-guided label generator (LID-

gen). LID-dis ingests both the features and label of a training sample to generate a refined

representation. CoLafier uses the LID scores from LID-dis to determine weights for each

instance in our specialized loss function. Both LID-dis and LID-gen are trained using this

weighted loss. They collaborate to determine label updates. To mitigate error accumulation,

we employ two augmented perspectives for each instance using their corresponding LID

scores to guide weight assignments and label update choices. Evaluations across multiple

noise settings confirm that CoLafier significantly boosts prediction accuracy, outperforming

state-of-the-art techniques.

For the third research direction, task 3 investigates the inference of label annotations

for two-level foodborne illnesses detection task with limited labeled examples. This task

provides us with a collection of tweets, the majority of which are unlabeled, with only a few

having labels obtained from human annotators at both tweet and word levels.

For this task, we propose a novel labeling framework, ICL2FID, structured in three steps:

word-level labeling, word-level label verification, and tweet-level labeling. At the labeling

steps, ICL2FID utilizes the CoT method to guide the LLM to leverage insights from one level

when it makes predictions at the other level. A critical verification step in between word

and tweet level labeling steps eliminates incorrect entities extracted earlier, preventing them

from influencing subsequent labeling outcomes. By employing example retrieval strategies

at each stage, ICL2FID minimizes biase arising from repetitive exposure to identical tweets

and labels, thereby effectively mitigating the risk of model hallucination.

The culmination of the three tasks delineated above represents a substantial stride

towards the application of deep learning methodologies on incomplete, noisy, and multi-

level labeled data. Each task embodies a contribution in a distinct subdomain of machine
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learning research. Task 1 pioneers a solution for explainable text classification amid limited

human attention supervision. Task 2 introduces a novel method leveraging LID scores of

internal representations to discern correctly and incorrectly labeled data. Our proposed

method on average outperforms SOTA techniques across a spectrum of noise settings. Task

3 offers a novel labeling framework that utilizes LLMs to annotate tweets with two-level

labels aimed at detecting foodborne illnesses, addressing challenges of label incompleteness.

Therefore, the insights and methodologies proposed in this dissertation are expected to

benefit the broader machine learning community and its applications to important domain

problems. It provides robust frameworks for tackling real-world challenges associated with

label completeness, quality, and structure in the data.

5.1.1 Future Directions

In this dissertation, we have examined several problem settings related to learning from

datasets characterized by incomplete, noisy, and multi-level labels. Below, we propose several

avenues for future research that build upon the challenges and findings presented in this work:

1. Our research primarily addressed two-level labeled datasets with incomplete labels

in the first and third tasks. However, the scenario where labels at both levels may

be noisy was not explored. This scenario presents a unique challenge as the model

must navigate the complexities of both incomplete and noisy labels. The difficulty

of learning from a limited label set, compounded by the risk of overfitting on such a

dataset, is further intensified by the introduction of label noise. This necessitates the

development of a sophisticated strategy capable of mitigating label inaccuracies while

efficiently leveraging the sparse labeled data across both levels.

2. In the second task, we introduced a novel framework designed to learn with noisy

labels, wherein LID-dis utilizes both features and labels of training samples to refine

their representations. For training LID-dis, labels are essential, yet the dataset may
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exhibit issues of both label incompleteness and noise, often with only a handful of

instances annotated with noisy labels. Extending our method to effectively make use

of limited noisy labels poses a significant challenge and warrants further investigation.

3. The third task involved employing LLMs for labeling unlabeled data. Despite promis-

ing results, a performance disparity remains between LLM-generated labels and those

provided by human experts. Bridging this gap presents an intriguing research op-

portunity. A potential solution could involve applying the noise-detection and label-

purification techniques proposed in the second task to LLM-generated labels. More-

over, the intricate relationship between the two levels of labels studied in the first

and third task offers additional prospects for improving the detection of inaccurate

predictions.

4. While the primary focus of my dissertation has been on label-related issues, real-

world datasets often encounter problems related to both feature completeness and

noise [151], which are intricately linked to label quality [1]. The LID score, employed

by our proposed method CoLafier for detecting noisy labels, was initially developed

for identifying instances with noisy input. This approach has the potential to lay the

groundwork for future research focused on concurrently improving both feature and

label quality.

5. In Task 1, we adopt human-like attention maps as explanations for model predictions.

Given that LLMs have been widely used across various domains, it would be intriguing

to explore their potential to provide self-explanations for their behaviors. In Task 3,

we employ the Chain of Thought (CoT) technique, instructing the model to rational-

ize its predictions in alignment with our demonstration examples. Here, we assume

that the demonstration example set is labeled on both levels, allowing us to construct

explanations for one level using information from the other. This approach could be

adapted to situations where one level of labeling in the demonstration set is incom-
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plete, presenting a greater challenge as the LLM would need to autonomously address

missing information.

6. Due to budget constraints, in Task 3, we did not explore some advanced LLMs, in-

cluding GPT-4-turbo [123] and Gemini [124]. These models are more expensive but

offer potentially superior performance compared to GPT-3.5-turbo. Additionally, their

capacity for longer inputs and outputs could make it feasible to instruct the model to

generate labels for both levels in a single step.

7. Beyond the foodborne illness detection task, the framework developed in Task 3 could

be applied to other domains. For instance, in the healthcare sector, the LLM could be

used to derive diagnostic results from a patient’s clinical notes. We could have clinicians

annotate a few clinical notes, providing diagnostic conclusions and highlighting key

supporting evidence. By using these annotations to construct demonstration examples,

we could guide the LLM to not only return diagnostic results but also present the

evidence supporting these conclusions.

These proposed directions underscore the complexity of learning from imperfect datasets

and highlight the need for innovative solutions that can address the multifaceted challenges

of data quality in machine learning.
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Appendix A

Appendix for Task 2

A.1 Local Intrinsic Dimensionality (LID)

Local Intrinsic Dimensionality (LID) serves as an expansion-centric metric, capturing

the intrinsic dimensionality of a data’s underlying subspace or submanifold [86]. Within

intrinsic dimensionality theory, expansion models quantify the growth rate of in the number

of data objects encountered as the distance from a reference sample expands [87]. To provide

an intuitive perspective, consider a Euclidean space where the volume of an m-dimensional

ball scales in proportion to rm as its size is adjusted by a factor of r. Given this relationship

between volume growth and distance, dimension m can be inferred using:

V2

V1

= (
r2
r1
)m ⇒ m =

ln (V2/V1)

ln (r2/r1)
(A.1.1)

By interpreting the probability distribution as a volume surrogate, traditional expansion

models offer a local perspective on data’s dimensional structure, as their estimates are con-

fined to the vicinity of the sample of interest. Adapting the expansion dimension concept to

the statistical realm of continuous distance distributions results in LID’s formal definition

[86]:
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Definition 1 (Local Intrinsic Dimensionality). For a data sample x ∈ X, let r > 0

represent the distance from x to its neighboring data samples. If the cumulative distribution

function F (r) is both positive and continuously differentiable at a distance r > 0, then the

LID of x at distance r is expressed as:

LIDF (r) ≜ lim
ϵ→0

ln (F ((1 + ϵ)r)/F (r))

ln (1 + ϵ)
=

rF ′(r)

F (r)
(A.1.2)

whenever the limit exists. The LID at x is subsequently defined as the limit as radius r → 0:

LIDF = lim
r→0

LIDF (r) (A.1.3)

Estimation of LID. Consider a reference sample point x ∼ X , where X denotes a

global data distribution. Each sample x∗ ∼ X being associated with the distance value

d(x, x∗) relative to x. When examining a dataset X derived from X , the smallest k nearest

neighbor distances from x can be interpreted as extreme events tied to the lower end of

the induced distance distribution[89]. Delving into the statistical theory of extreme values,

it becomes evident that the tails of continuous distance distributions tend to align with

the Generalized Pareto Distribution (GPD), a type of power-law distribution[152]. In this

work, we adopt the methodology from [89], and employ the Maximum Likelihood Estimator,

represented as:

L̂ID(x) = −

(
1

k

k∑
i=1

log
ri(x)

rmax(x)

)−1

(A.1.4)

Here, ri(x) signifies the distance between x and its i-th nearest neighbor, while rmax(x)

represents the maximum of these neighbor distances. It’s crucial to understand that the LID

defined in (A.1.3) is a distributional quantity, and the L̂ID defined in (A.1.4) serves as its

estimate.

However, in practice, computing neighborhoods with respect to the entire feature set

X can be prohibitively expensive, we will estimate LID of a training example x from its
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k-nearest neighbor set within a batch randomly selected from X. Consider a L-layer neural

network h : X → Rc, where hj is the transformation at the j-th layer, and given a batch

XB ⊂ X and a reference point x, the LID score of x is estimated as[89]:

L̂ID(x,XB) = −

(
1

k

k∑
i=1

log
ri(hj(x), hj(XB))

rmax(hj(x), hj(XB))

)−1

(A.1.5)

In this equation, hj(x) is the output from the j-th layer of the network. The term ri(hj(x), hj(XB))

represents the distance of hj(x) to its i-th nearest neighbor in the transformed set hj(XB),

and rmax is the neighborhood’s radius. The value L̂ID(x,XB) indicates the dimensional com-

plexity of the local subspace surrounding x after the transformation by hj. If the batch is

adequately large, ensuring the k-nearest neighbor sets remain in the vicinity of hj(x), the

estimate of LID at hj(x) within the batch serves as an approximation to the value that would

have been computed within the full dataset hj(X).

A.2 The Pseudo Code of CoLafier

The pseudo-code for CoLafier is presented in Algorithm 1. Initially, CoLafier undergoes

a warm-up phase for T0 epochs. Subsequent epochs involve loss weight assignment and label

update influenced by LID scores. To counteract error accumulation, CoLafier integrates

two augmented views for each sample, using their respective LID scores to guide weight

calculation and label update.

A.3 The Design of of Equation 3.3.13-3.3.15

The design of wi,c, wi,h, wi,n in equations aims to ensure that the sum of wi,c, wi,h, and

wi,n equals 1.
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Algorithm 1 CoLafier algorithm.

Input: noisy dataset D̃ = {(xi, ỹi)}, start epoch T0, total epochs Tmax, total number of
batches Bmax, LID-dis fLD(ΘLD), LID-gen fGE(ΘGE), λ∗, λcons, ϵ

W
low, ϵ

W
high, ϵ

U
low, ϵ

U
high, τ, ϵk.

Output: LID-gen fGE(ΘGE)
for T = 1, ..., Tmax do

for B = 1, ..., Bmax do
obtain a mini-batch D̃B = {(xi, ỹi)}NB

i=1

obtain view sets V 1
B and V 2

B, and input pair sets D̃1
B, D̃

2
B, D̃

1∗
B , D̃2∗

B

obtain prediction sets: Ŷ k,G
B from fGE, and Ŷ k,D

B , Ŷ k∗,D
B from fLD, where k ∈ {1, 2}

if T ≤ T0 then
obtain LGE =

∑2
k=1

(
LCE(ỹi, ŷ

k,G
i )

)
, LGE =∑2

k=1

(
LCE(ỹi, ŷ

k,D
i ) + λ∗LCE(ỹi, ŷ

k∗,D
i )

)
{Warm-up}

else
obtain L̂ID

W
(D̃1

B), and L̂ID
W
(D̃2

B) {Using Equation 3.3.3-3.3.4 to get LID scores
for weight assignment}
obtain D̂1

B, D̂
2
B {Input pairs for predictions from fGE}

obtain Ûk
B = D̃k

B∪D̂k
B, and L̂ID

U
(Ûk

B) {Using Equation 3.3.5-3.3.8 to get LID scores
for label update}
obtain {wi,c}, {wi,h}, and {wi,n} {Using Equation 3.3.9 - 3.3.15 to get weights for
each loss term}
obtain Lclean,GE,Lhard,GE,Lnoisy,GE,Lclean,LD,Lhard,LD,Lnoisy,LD {Using Equation
3.3.16 - 3.3.27 to calculate weighted clean, hard, and noisy loss}
obtain LGE = Lclean,GE + Lhard,GE + Lnoisy,GE,LLD = Lclean,LD + Lhard,LD + Lnoisy,LD

end if
ΘB+1

GE = AdamW(LGE,Θ
B
GE), and ΘB+1

LD = AdamW(LLD,Θ
B
LD)

if T > T0 then
for i = 1, ..., NB do

obtain ∆ỹki ,∆ŷki , where k ∈ 1, 2 {Using Equation 3.3.30 and 3.3.31 to calculate
prediction difference}
obtain t̃ki , t̂

k
i , ý

k,G
i , where k ∈ 1, 2, then determine whether to update label ỹi with

ýk,Gi or not {Using Equation 3.3.32-3.3.40 to make decision on label update}
end for

end if
end for

end for
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Proof. Without loss of generality, assume that wi,1 > wi,2. Then:

wi,c = wi,2,

wi,h = wi,1 − wi,2,

wi,n = 1− wi,2.

Hence wi,c + wi,h + wi,n = 1.

A.4 The Design of Equation 3.3.36 and 3.3.37

The design of (2−∆ŷki )/2 and (2−∆ỹki )/2 terms in equations aims to map both ∆ŷki

and ∆ỹki into the interval [0, 1]. This is based on the fact that the range of ∆ is [0, 2].

Proof. 1. Consider vectors y = [y1, y2, ..., yn] and u = [u1, u2, ..., un], where yi ∈ [0, 1], ui ∈

[0, 1].
∑n

i yi = 1, and
∑n

i ui = 1. Define ∆ as ∆ =
∑n

i=1 |yi − ui|.

2. Without loss of generality, assume that yi ≥ ui for i ∈ [1, 2, ...,m] and yj < uj for

j ∈ [m+ 1,m+ 2, ..., n]. Then:

∆ =
m∑
i=1

(yi − ui) +
n∑

j=m+1

(uj − yj).

3. Rearranging and utilizing the fact that the summation of each vector is 1, we deduce:

∆ =
m∑
i=1

yi −
m∑
i=1

ui +
n∑

j=m+1

uj −
n∑

j=m+1

yj,

m∑
i=1

yi +
n∑

j=m+1

yj =
m∑
i=1

ui +
n∑

j=m+1

uj,



PhD Dissertation: Dongyu Zhang 117

m∑
i=1

yi −
m∑
i=1

ui =
n∑

j=m+1

uj −
n∑

j=m+1

yj,

∆ = 2(
m∑
i=1

yi −
m∑
i=1

ui).

4. Since
∑m

i=1 yi ∈ [0, 1],
∑m

i=1 ui ∈ [0, 1] and
∑m

i=1 yi ≥
∑m

i=1 ui ≥ 0, it is implied that

(
∑m

i=1 yi −
∑m

i=1 ui) ∈ [0, 1].

5. Hence, ∆ ∈ [0, 2] and consequently, 2−∆
2

∈ [0, 1].

A.5 Experiment Setup

All experiments are executed using A100 GPUs and PyTorch 1.13.1. We use an AdamW

[153] optimizer with a learning rate of 0.001 and a weight decay of 0.001. The training epochs

are 200 and the batch size is 128. CoLafier first warms up for 15 epochs, during the warm-

up stage, CoLafier is optimized with cross entropy loss from two views, without weight

assignment or label update.

Inspired by [35], for CoLafier, we employ two separate augmentation strategies to pro-

duce two views. The first approach involves random cropping combined with horizontal

flipping, and the second incorporates random cropping, horizontal flipping, and RandAug-

ment [103]. The value of ϵWlow and ϵUlow are both 0.001. The value of ϵWhigh and ϵUhigh start at

values of 0.05 and 0.5 respectively, linearly increase to 1.0 in 30 epochs. The value of ϵk is

fixed at 0.1. The values of λ∗ and λcons are 0.5 and 10 respectively.

In real-world applications, the noise ratio and pattern are often unknown. Earlier studies

[32, 100, 36] assumed the availability of prior knowledge about the noise ratio or pattern, and

they based their hyper-parameter settings on these assumptions. Recent works [35] contend

that such information is typically inaccessible in practice. Even though these works claim not

to rely explicitly on noise information, their hyper-parameters still change as the noise ratio
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and type shift. For the sake of a fair comparison, we re-evaluated certain methods (indicated

by a * symbol after the method name) using their open-sourced code. However, if these

methods originally assumed unknown noise ratios or types, we kept their hyper-parameters

consistent. The hyper-parameter settings we adopted were based on their medium noise

ratio configurations for each noise type (50% symmetric noise, 40% asymmetric noise, 40%

instance dependent noise). We executed each method five times and recorded the average

of the top three accuracy scores obtained during the training process. We employ a distinct

backbone model for instance-dependent noise and real-world noise to ensure our results are

comparable with those presented in [110, 35].
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