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Abstract—Human-like explanation for text classification is
essential for high-impact settings such as healthcare where human
rationales are required to support specialists’ decisions. Conven-
tional approaches learn explanations using attention mechanisms
to assign heavy weights to words that have a high impact on a
model’s prediction. However, such heavily-weighted words often
do not reflect human intuition. To advance human rationale, re-
cent studies propose to supervise attention mechanisms assuming
access to a huge set of attention labels collected from humans,
called human attention maps (HAMs). Unfortunately, acquiring
such HAMs for a huge dataset is very tedious, error-prone,
and expensive in practice. Thus, we propose the novel problem
of text classification with limited human attention supervision.
Specifically, we study the learning of human-like attention weights
from a dataset in which all documents contain classification labels
but only a few documents provide HAMs. To this end, we design
a deep learning architecture, HELAS: Human-like Explanation
with Limited Attention Supervision to adaptively learn attention
weights that focus on words analogous to a human with very
limited attention supervision. HELAS effectively unifies joint
learning improving both tasks of text classification and human-
like explanation even with only insufficient supervision labels for
the latter task. Our experiments show that HELAS generates at-
tention maps similar to real human annotations raising similarity
scores up to 22% over state-of-the-art alternatives, even with as
little as 2% of the documents having HAMs. It concurrently
improves text classification by driving accuracy up to 19% over
four state-of-the-art methods.

Index Terms—Model Explainability, Text Classification, Joint
Learning, Attention Mechanism

I. INTRODUCTION

Motivation. Text classification is a crucial text mining
task with broad applications including fake news detection
[1], clinical diagnosis [2], and sentiment analysis [3]. With

This work was done when Cansu Sen was at Worcester Polytechnic
Institute. This work was supported by the NSF Division Information and
Intelligent Systems (awards 1815866, 1852498, 1910880, and 1718310), the
GAANN Fellowship in Computer and Information Sciences for AI from the
U.S. Dept. of Education (P200A150306 and P200A180088), and the Royal
Thai Government.

the availability of massive training corpora, several modern
approaches [4]–[6] achieve impressive performance. Yet they
are remain largely inapplicable in settings where explanations
are required to support a decision. For example, a doctor must
know on what information a diagnostic model relies before
trusting its predictions. Attention-based models [7]–[9] can
be used to acquire such explanations by learning to assign
heavy weights to words that have a high impact on a model’s
prediction.

Recently, there is growing evidence that attention weights
that look as if they were generated by humans lead to both
better explanations and sometimes even improved classifica-
tion [10], [11]. However, attention generated by conventional
attention approaches are dissimilar to human rationales [11],
[12]. Classic attention contradicts the ultimate goal of produc-
ing explainable models that allow human users to understand
a model’s rationale for a given prediction. Recent works [13]–
[18] have begun to overcome this hurdle, enhancing expla-
nations by encouraging them to be human-like, or resemble
rationales provided by humans. This has been achieved by
collecting additional attention labels and explicitly supervising
the attention mechanism.

State-of-the-Art. Conventional approaches to supervised
attention for text classification [10], [15], [16], [19] use hand-
picked lists of words-of-interest, defined by a rule or by a
domain expert, to serve as word-level attention labels. For
training classifiers, attention weights that deviate from these
lists are penalized. However, this fixed list of words-of-interest
is used for all input text. Thus, this is not likely to naturally
lead to human-like attention due to this rigidity. To overcome
this, recent work [18] has turned to human-gaze attention data
collected from large corpora as a static source to supervise
attention methods. However, as this approach again is static
using general knowledge as attention on unrelated sources of
text; there is a disconnect between how human attention was
initially recorded and the final classification task.
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Fig. 1: Explainable text classification with limited human
attention supervision. Given a corpus of documents, each with
a document-level label for classification task while only a few
with word-level labels (human attention maps) for supervising
attention, the dual goal is to learn a model that classifies text
documents accurately and generates human-like word attention
maps.

Meanwhile, attention weights have also been learned di-
rectly from human rationales specific with each training input
document [17], [20], indicating which set of words a human
pays more or less attention to while they perform a classifica-
tion task. Using such a set of fine-grained word-level attention
labels collected for the task at hand, referred to as a human
attention map (HAM), is an extremely promising approach for
creating document-specific human-like attention mechanisms
[11]. As proposed, these approaches require access to HAMs
for every single training document along with each document’s
corresponding classification label. In practice, however, col-
lecting HAMs is far more expensive than classification labels
alone since it requires annotators to dedicate much more effort
and time to consider every word in a huge dataset. This is
even more impractical for highly-technical domains such as
healthcare where expert annotators are rare and busy.

Problem Definition. In this work, we are the first to study
the problem of explainable text classification with limited
human attention supervision. This addresses the real-world
case where access to HAMs is severely limited. As illustrated
in Figure 1, assume we are given a set of training documents,
each with one associated classification label. A very small
proportion of these training documents also have fine-grained

word-level labels (HAMs), indicating which words a human
annotator found to be most relevant as they assigned the class
label. Our goal is to train a model that simultaneously solves
the text classification task accurately while predicting human-
like attention weights that are similar to those that would be
generated by a human for the given document.

Challenges. Text classification with limited human attention
supervision is challenging for the following reasons.
• Sensitivity of attention to changing contexts. A word with

high human attention in one document does not necessarily
have high human attention in the other document. This implies
that the attention weight for a word relies heavily on the
context in which it appears. A successful attention method
must effectively capture this reliance between context and
human-like attention.
• Conflict between human-like attention generation and

text classification. Our problem requires a model to assign
specialized weights to individual words. However, every word
contributes to the classification task. Therefore, unsupervised
attention weights are often more distributed across a sentence
than a HAM. A successful model must balance between the
two contradictory objectives of human-likeness and classifica-
tion accuracy.
• Varying levels of supervision. This problem has two tasks:

classification and human-like attention generation. However,
each of the two tasks has a different amount of labeled
data — all data have classification labels, only some have
human attention maps. A good solution must balance the
feedback given from each task without overemphasizing the
fully-labeled task.

Proposed Method. To handle these challenges, we pro-
pose the deep learning architecture, HELAS: Human-like
Explanation with Limited Attention Supervision, which pro-
duces human-like attention values during text classification,
even when very few human attention labels are available.
HELAS processes input text in three phases : (1) HELAS
encodes input text through a text representation learner into
both dense vectors for each word and one vector for the
whole document. This text representation learner is highly
modular and can learn representations using many recent text
models such as RNNs [21], [22] or BERT [5]. (2) The human-
like attention learner in HELAS learns human-like attention
weights for each word by both considering its individual
impact on the classification task and by carefully incorporating
its contextual information. This allows the learned attention
mechanism to be adaptive to context, similar to a human
annotator. (3) The contextualized representation collates the
contextualized information learned according to the human-
like attention learner with the overall text representation to
consider both sources or information and perform the final
classification. Thus, our approach succeeds to capture the
unique contribution of each word in a given document and
produce both human-like attention and accurate classifications.

HELAS is optimized using a joint loss function for the
classification and human-like attention-learning tasks. We in-
troduce a hyper-parameter into the loss function for striking



a balance between classification and attention supervision,
resulting in one unified training objective. This newly defined
loss handles the varying levels of supervision for both clas-
sification and attention supervision and thus allows HELAS
to deliver accurate classifications and human-like attention
weights simultaneously.

Contributions. Our contributions are as follows:
• We define the open problem of explainable text classifi-

cation with limited human attention supervision, which is to
develop a human-like explainable classifier when few HAMs
are available.
• We propose the first solution to this problem, HELAS,

which contains two key components: (1) a novel attention
method, called human-like attention learner, that successfully
learns human-like attention weights, adapting to different
contexts, and (2) a custom contextualized representation that
considers the impact of all words to make its final prediction.
• We propose a joint loss function for HELAS that balances

the limited attention supervision and fully-supervised classi-
fication supervision, encouraging the model to generate more
human-like attention values – even with very few HAMs.
• We demonstrate that even when HAMs are available for

as little as 2% of the training data, HELAS still succeeds to
generate human-like attention, achieving up to 22% increase in
similarity compared to four state-of-the-art methods. HELAS
also gets better performance on the classification task achiev-
ing significant (up to 19%) gains in accuracy.

II. RELATED WORKS

Supervised Attention Models. Attention supervision is
used for NLP problems. In [23], [24], conventional alignment
models are used to guide the attention module for language
translation. [15] apply supervised attention method for event
detection, namely, their model focuses on event information on
both the word- and sentence-level. [16] introduce supervised
attention for improving the accuracy of the semantic event
recognition; namely, by deploying semantic word lists and
dependency parsing trees [25] to guide the attention compo-
nents. [18] propose a method to use estimated human atten-
tion derived from eye-tracking corpora to regularize attention
functions for sequence classification tasks. While these works
show supervised attention can improve accuracy, the forms
of guidance adopted remain limited – none of the methods
mentioned above get attention guidance via word-level human
attention maps collected for the classification task.

[17] propose a model with an attention mechanism for
text classification that jointly exploits document classification
labels and sentence-level annotation labels. They assume that
annotators explicitly mark sentences that support their overall
document categorization for each document in the corpus.
However, collecting fine-grained sentence-level or word-level
annotation labels for all instances in a dataset can be costly
and time-consuming. Moreover, in [17], training with each
level of labels is split into two steps. It is time-consuming
and sophisticated to train their model. Hence, it is worthy of

exploring a method that can be trained efficiently with limited
access to HAMs.

Model Explainability. Deep-learning models suffer from a
lack of explainability, despite the need for explainable models
in many domain settings. Thus, several studies in recent years
attempt to make neural network models more explainable.
Rationale-based methods are examples of this for NLP [26],
[27]. In these works, the goal is to train a classification
model and produce binary “rationales” to serve as human-like
explanations of model predictions. However, while their direc-
tion is promising, their classification performance remains a
drawback compared to recent attention-based approaches [11].
Also, these rationale-based architectures make classifications
based on the selected “rationales”, not the full text [26], [27].
So the information in these non-rationale words is missing
during prediction.

Recent work in deep learning instead has begun to use
attention mechanisms to attempt to bring interpretability to
model predictions [7]–[9]. However, these works assess the
produced attention maps solely qualitatively by visualizing a
few hand-selected instances.

[11] approaches attention explainability from a human-
centered perspective. They investigate the similarity between
human attention and machine attention and interpret such
similarity as a measurement of the model explainability. It
indicates that it is intuitive to humans as it matches which
words humans would rely on when making decisions. [11]
makes a novel human attention map resource available to
the community. Inspired by their approach, we now leverage
human attention to explicitly train a model to concurrently
produce the overall task prediction as well as the human-like
explanations with the power of modern attention mechanisms.

III. METHODOLOGY
A. Problem Definition

In this paper, we study the problem of explainable text
classification with limited human attention supervision. Given
a set of N documents I = {D1, . . . ,DN}, each document Di
consists of T words Di = [wi1, . . . , w

i
T ], and a set of class

labels yi = [yi1, . . . , y
i
K ], where K is the cardinality of yi,

yik ∈ {0, 1} and
∑K
k=1 y

i
k = 1. The document classification

task is to parameterize a function fθ(·) that maps Di → yi,
generalizing to unseen instances.

A Human Attention Map (HAM) is a vector of length T ,
[α1, . . . , αT ], where each entry αt indicates the degree of
attention that a human pays to a corresponding word wt in a
document. HAM is a binary map collected from humans, i.e.,
αt = 1 indicates that the corresponding word receives high
attention while 0 shows low attention. A Machine Attention
Map (MAM = [α̂1, . . . , α̂T ]) is a human-like attention map
predicted by a neural network model, where α̂i ∈ [0, 1]
indicates the probability of the corresponding word that would
receive high attention from humans.

For each document Di, we are given a class label yi.
However, only a limited amount of documents have HAMs.
One component of fθ(·) is an attention mechanism that aims



to output MAMs that are similar to HAMs. Our task is to
jointly learn the function f(θ) while minimizing the difference
between HAMi and MAMi for all documents Di, the latter
task is named human-like attention generation. If conditioned
perfectly, fθ(Di) → (ŷi,MAM i) such that ŷi = yi and
MAMi = HAMi.

For readability, we henceforth describe our method for a
single document Di, dropping i when it is unambiguous.

B. Proposed Method: HELAS

Our proposed deep learning architecture, HELAS: Human-
like Explanation with Limited Attention Supervision, is de-
picted in Figure 2. HELAS consists of three major compo-
nents: (1) The text representation learner encodes raw text to
their numerical representations. This component can be any
sequential deep learning architecture, such as RNNs [21], [22]
or BERT [5]. The purpose of this layer is to encode the input
document into a document representation and a sequence of
word representations. (2) The human-like attention learner
generates a MAM aimed to be similar to the given HAM.
The attention mechanism determines the human-like attention
weight for each word by the interrelation between word and
sentence representations. (3) The contextualized representation
utilizes the MAM from the human-like attention learner to
enhance the context vector to estimate the class label, y, of a
document.

1) Text Representations Learning: We focus our study on
the two popular sequence modeling including RNNs [21], [22]
and BERT [5] while HELAS can be, in practice, paired with
any sequence-representation learning architectures.

HELAS-RNN. One common and powerful architecture for
document classification is an RNN combined with an attention
mechanism [7], [28]. Following this architecture, the HELAS-
RNN model first utilizes an encoding layer to map words
into real-valued vector representations where semantically-
similar words are mapped close to one another. We use a pre-
trained word embedding set φ for this mapping: xt = φwt.
HELAS-RNN then employs a recurrent layer to embed vector
representations of words into hidden states, processing words
once at a time. In our experiments, we use both LSTM [21]
and GRU [22] memory cells.

Assuming that Γ is the recurrence function (e.g., LSTM or
GRU) and xt is the embedded t-th word from the document
D, HELAS-RNN is modeled as:

et = Γ(xt, et−1) (1)

where et is the hidden state. The final hidden state eT is used
as the document representation, defined as r = eT .

HELAS-BERT. HELAS-BERT first employs a transformer
architecture [4] to encode words, initialized with a pre-trained
BERT model [5]. Following the standard practice in BERT-
based architectures, the first word of the input is the special
token ‘[CLS]’. ‘[SEP]’ token is added to the end of the input
sequence to denote the end. ‘[PAD]’ token is used to pad the
sequence in case the input sequence is shorter than the max-
imum input length supported by the BERT model. HELAS-
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Fig. 2: Overall architecture of HELAS.

BERT generates two outputs. First is a sequence of learned
word representations [e1, ...eT ] for each input word. Second
is a vector representation r for the whole input document. This
vector r corresponds to the output of the ‘[CLS]’ token further
processed by a linear layer and a tanh activation function.

[e1, ...eT ], r = BERT([w1, ...wT ]) (2)

2) Human-Like Attention Generation: The goal is to gen-
erate attention scores to be as close as possible to human
attention. This way, attention scores can be interpreted as
human-like explanations for the final classification decision.

We hypothesize that the importance of each word relies
heavily on its belonging document. Therefore, HELAS is de-
signed to learn specialized attention function that is adaptable
for different training corpus. The human-like attention learner
learns MAMs as follows:

st = tanh(Weet + be) (3)

α̃ = s>t r (4)
α̂ = sigmoid(α̃) (5)

where We and be are weight matrix and bias term in the linear
layer, which can be optimized during the training time. Here,
we first encode new word representations st from et. st serves
as a specialized representation of the importance of wt, while
et is still a general representation of the information contained
in wt. Then the raw attention score α̃ is determined by such st
and the document representation r in order to induce MAMs
to capture more flexible relation between et and r. MAM =
[α̂1, . . . , α̂T ] is then utilized by the subsequent layers of the



HELAS. To this end, we take the binary cross entropy as the
general loss of the attention at the word level.

Ja(HAM,MAM) = −(

T∑
t=1

(α log α̂t+(1−αt) log (1− α̂t))).

(6)
This objective optimizes the model to assign human-like atten-
tion scores to every word. By providing word-level supervision
to the document classification model, we are able to teach it
to focus on the most relevant areas selected by humans and
thereby improve the quality of document representations along
with the overall performance.

It is worth noting that special tokens, such as ‘[CLS]’,
‘[SEP]’ and ‘[PAD]’, are invisible to human annotators (if the
text representation learner is BERT). Thus, their corresponding
human attention weights are always set to zero. Also, the
tokenizer used by the BERT model is WordPiece [29], which
sometimes splits a word into several words. These generated
words are then assigned with the same human attention score
as the original word.

3) Document Classification: Using the MAMs, the learned
word representations et and the document representation r
generated by the text representation learner, the contextualized
representation c is computed as follows:

c = tanh([r;
∑
t

α̂tet]). (7)

Unlike the previous works [17], [18] which use
∑
t α̂tet as

the final text representation for classification, we concatenate
document representation r and weighed sum of word repre-
sentations to model a dense embedding for the document.
For a given HAM, when α = 0, it does not indicate that
the corresponding word was completely ignored by humans.
During training, the values of some α̂s could be very close to
0. Since r contains basic information of the whole document,
the contextualized representation will consider every word
when performing classification, even if some words’ associated
α̂ ≈ 0. Those words with higher α̂ values remain a higher
impact on final prediction results.

The output layer uses c as follows:

d = Dropout(Wcc+ bc) (8)

p̂(yk = 1|D) =
exp(W

(k)
d d+ bd)∑K

k=1 exp(W
(k)
d d+ bd)

(9)

To further fuse r and
∑
t α̂tet together and reduce the risk

of overfitting, we apply a linear transformation followed by a
dropout layer in Equation 8. Here, Wc, bc are weight matrix
and bias term in the linear layer. After dropout, Equation 9
assigns a probability to each possible class, where Wd, bd are
weight matrix and bias term in the softmax function. We use
the cross-entropy loss as the document classification objective
function where p̂(yk = 1|D) is the prediction and y the ground
truth label.

Jc(y, ŷ) = −
K∑
k=1

yk log (p̂(yk = 1|D)). (10)

4) Joint Training of HELAS: In HELAS, the human-like
attention generation task and classification task are jointly
trained. Thus, we define a joint loss function in the training
process upon the losses specified for different subtasks as
follows:

J(θ) =
∑

(Jc(y, ŷ) + λJa(HAM,MAM)). (11)

where θ denotes, as a whole, the parameters used in our
model, and λ is the hyper-parameter for striking a balance
between document classification supervision and attention
supervision. When only a few documents contain HAMs, the
tunable parameter λ can be optimized to emphasize the small
corresponding supervision signals, then both the classification
and the human-like explanation goals can be achieved evenly.

During the training process, if there is no HAM for the input
text, we only minimize Equation 10. When both HAMs and
classification labels are available, we minimize Equation 11.

IV. EXPERIMENTS

We evaluate our proposed method on four publicly avail-
able datasets that are compared against four state-of-the-art
methods.

A. Datasets

The four datasets used in our experiments contain document
labels for all instances while only a few of them have HAMs.
All datasets contain roughly balanced examples between posi-
tive and negative classes. The proportions of positive examples
are between 45% to 68%. It should be noted that our work
can also be applied to multi-class datasets.
• Yelp-HAT [11]. This dataset provides human attention

maps for a collection of 1000 reviews from the Yelp dataset.
Each review comes with a human attention map and a class
label indicating whether the review is positive or negative. All
characters are lowercase, punctuation is removed. Reviews are
50-75 words long. 70% of reviews are used for training with
the remaining 30% for testing.

The dataset contains annotations from multiple humans for
each of the reviews because each annotator may have different
opinions on how indicative words are for review sentiments.
To obtain reliable representations of human attention, we apply
Consensus Attention Maps as being used in [11], by extracting
HAMs from all annotators’ agreement that are then used to
evaluate a sentiment classification task.
• N2C2. N2C2 NLP Research datasets contain unstructured

notes from the Research Patient Data Repository at Partners
Healthcare1. From this clinical note repository, we use the
2014 challenge data, consisting of a set of medical documents
that track the progression of heart disease in diabetic patients.
Each clinical note is assigned to an expert in order to indicate
the presence and progression of a disease (diabetes or heart
disease), associated risk factors, and the time they were present
in the patient’s medical history.

In this dataset, we focus on predicting heart disease. For
each patient in the dataset, if there is a clinical note with a heart

1https://n2c2.dbmi.hms.harvard.edu



disease annotation (indicated by CAD tag), we assign all notes
belonging to this patient to the positive class. Patients with no
heart disease mention are assigned to the negative class. Then
we train a model that inputs every individual clinical note and
predicts whether this note belongs to a heart-disease patient.
N2C2 dataset contains 520 clinical notes in the training set
and 511 clinical notes for the testing set. A series of notes
from the same patient is assigned into either the training or
testing set.

We use all heart disease-related words, as outlined by the
annotation guidelines of 2014 Heart Disease Risk Factors
Challenge of n2c2 NLP Research Data Sets2, to create human
attention maps. These include remarks of patients having heart
disease (e.g., ”coronary artery disease”) or indirect mentions
(e.g., “unstable angina,” “PLAVIX” - a blood thinner used to
prevent heart attack).
• Movie Reviews [30]. Each review comes with a positive/

negative sentiment label and human annotation on word-level.
Due to the length constraint of our model, we used the first
200 words as text input. Reviews in which the first 200 words
are all labeled 0 are dropped. After preprocessing, there are
1,241 reviews in the training set and 320 reviews in the testing
set.
• Standard Sentiment Treebank (SST) [31]. This dataset

contains 9,545 sentences in the training set and 2,310 sen-
tences in the testing set. Each sentence comes with a binary
classification label (positive or negative). The original data do
not contain human attention annotation. We randomly selected
400 sentences from the dataset (200 from training split and 200
from testing split, positive/negative sentences ratio 1:1). Then
we asked four researchers in our groups to annotate words that
are indicative of the review sentiment in each sentence.

B. Compared Methods

We compare the proposed HELAS with the following
methods:
• Limited Supervised RA. Rationale-Augmented (RA)

model is proposed by [17]. The model has a hierarchical
structure that first estimates the probability of each sentence in
the input document is rationale (which means labeled as high
attention in human attention map), in which the probability
is determined by sentence representation without considering
document representation. Then it produces a document-level
representation by taking the sum of its constituent sentence
representations weighed by these estimates. The document
representation is further used to make document class pre-
diction. The model is first trained with sentence-level predic-
tion task then being trained with document-level prediction
task. To compare against our method, we use the word-level
binary attention (high attention or low attention) prediction
task instead of sentence-level three rationale classes (positive
rationale, negative rationale, or non-rationale) prediction task.
Here, “Limited Supervised” means that the model is only

2https://portal.dbmi.hms.harvard.edu/projects/
n2c2-nlp/

trained with data that have both document classification labels
and HAMs. Note that most of the data having only document
classification labels are not used in the method.
• Self-labeling RA. This approach also utilizes the model

framework proposed in [17]. Self-labeling was proposed by
[32]. In our case, we repeat the word-level training phrase
multiple runs. In each run, the model is trained on data with
HAMs. After the model is trained, it generates pseudo HAMs
for data without HAMs. Then instances with high confident
predictions on HAMs are added to the training data. The
procedure is repeated until training data without HAMs are
exhausted. After that, the model is trained on the document
classification task.
• External Attention SCHA. SCHA (Sequence classi-

fication with human attention) is proposed by [18]. Their
model contains an attention mechanism that predicts attention
weights for each word in the input document. This attention
mechanism only takes word representations into account. The
document representation is computed by taking the sum of
its constituent word representations weighed by these esti-
mates. It supervises the attention mechanism while training
a classification task. This method assumes access to two
unrelated datasets: One contains documents with classification
labels, another one is a different set of documents contains
HAMs (collected from human eye-tracking [33]). The training
proceeds by flipping back and forth between two objectives
depending on which dataset the training instance is drawn
from. Note that in our implementation, this method does not
have access to HAMs in the three classification datasets that
we used in our experiments, it can only utilize HAMs from
the human eye-tracking corpora.
• Joint-learning SCHA. This approach has the same

training procedure as our proposed HELAS framework. The
difference is that this approach used the model architecture
proposed in [18] instead of our HELAS architecture.

For each method, we experiment with three text represen-
tation learners: LSTM, GRU, and BERT.

C. Metrics

The following two metrics are used for evaluation:
Behavioral Similarity [11]. To evaluate the explainable

nature of each method, we use the Behavioral Similarity metric
proposed in [11]. This metric measures the similarity between
human and machine attention maps via the Area Under the
ROC Curve:

B(HAM,MAM) =
1

|D|
∑
i

AUC(HAMi,MAMi) (12)

where |D| is the number of documents in dataset D. Behavioral
similarity ranges between 0 and 1.

Accuracy. We use standard classification accuracy to mea-
sure the sequence classification performance.

D. Implementation Details

We implement the text representation learners as
LSTM/GRU with 128-dimensional hidden states and BERT



TABLE I: Performance of three text representation learners LSTM, GRU, and BERT on three tasks of Yelp-HAT Sentiment
Classification, N2C2 Heart Disease Prediction, and Movie Reviews Sentiment Classification, with 2% of training data having
HAMs. Metrics: (1) Behavioral similarity for human-like attention generation task, and (2) Accuracy for classification task.

Dataset Methods LSTM GRU BERT
Behave Sim. Accuracy Behave Sim. Accuracy Behave Sim. Accuracy

Yelp-HAT

Limited Supervised RA .62 ± .03 .56 ± .04 .72 ± .01 .57 ± .03 .40 ± .01 .77 ± .03
Self-labeling RA .75 ± .01 .88 ± .02 .79 ± .01 .89 ± .01 .59 ± .06 .94 ± .01
External Attention SCHA .75 ± .07 .65 ± .05 .82 ± .00 .89 ± .01 .76 ± .03 .95 ± .00
Joint-learning SCHA .57 ± .01 .67 ± .06 .57 ± .02 .89 ± .02 .57 ± .03 .95 ± .01
HELAS (ours) .84 ± .00 .92 ± .01 .84 ± .00 .92 ± .00 .86 ± .01 .96 ± .00

N2C2

Limited Supervised RA .90 ± .01 .62 ± .05 .91 ± .00 .72 ± .01 .48 ± .05 .69 ± .01
Self-labeling RA .92 ± .00 .76 ± .00 .91 ± .01 .76 ± .00 .68 ± .06 .77 ± .00
External Attention SCHA .56 ± .02 .76 ± .00 .62 ± .02 .76 ± .00 .46 ± .05 .76 ± .00
Joint-learning SCHA .52 ± .06 .68 ± .00 .70 ± .07 .76 ± .00 .49 ± .05 .76 ± .00
HELAS (ours) .93 ± .00 .78 ± .00 .92 ± .00 .77 ± .00 .73 ± .05 .78 ± .01

Movie Reviews

Limited Supervised RA .54 ± .01 .54 ± .00 .56 ± .03 .54 ± .00 .42 ± .01 .58 ± .03
Self-labeling RA .53 ± .02 .58 ± .04 .54 ± .02 .63 ± .06 .56 ± .03 .83 ± .02
External Attention SCHA .61 ± .02 .54 ± .00 .61 ± .01 .54 ± .00 .58 ± .01 .86 ± .01
Joint-learning SCHA .50 ± .02 .54 ± .00 .46 ± .01 .54 ± .00 .58 ± .02 .86 ± .00
HELAS (ours) .69 ± .01 .77 ± .00 .69 ± .02 .76 ± .01 .80 ± .01 .87 ± .01

SST

Limited Supervised RA .81 ± .00 .66 ± .00 .88 ± .02 .68 ± .01 .82 ± .06 .78 ± .01
Self-labeling RA .84 ± .02 .71 ± .01 .86 ± .01 .72 ± .00 .96 ± .00 .87 ± .00
External Attention SCHA .89 ± .00 .54 ± .00 .89 ± .00 .54 ± .00 .84 ± .04 .87 ± .00
Joint-learning SCHA .50 ± .00 .54 ± .00 .50 ± .00 .54 ± .00 .47 ± .06 .87 ± .00
HELAS (ours) .91 ± .00 .77 ± .00 .91 ± .00 .77 ± .00 .97 ± .00 .87 ± .00

[5]. The learning rates are 1e-3 and 2e-5 for LSTM/GRU and
BERT, respectively. The LSTM/GRU model is trained for 40
epochs, while the BERT model is trained for 20 epochs. All
three models are set the dropout rate at 0.2 and optimized
using Adam [34]. We did a hyperparameter search for λ
in the joint loss function. The best λ for LSTM model is
20, for GRU is 30, and for BERT is 4. All experiments are
implemented on PyTorch [35] and run on a Tesla V100 GPU.

For Yelp-HAT dataset, we did a random train-test split
every time. For N2C2, Movie Review, and SST datasets,
we used the defined train-test splits every time. For Yelp-
HAT, N2C2, and Movie Review datasets, the training data
with and without HAMs are randomly assigned every time.
We use the pre-trained BERT-base-uncased model from the
“Transformers” library3. [36] For each experiment, we save the
model with the highest accuracy during training and report the
average evaluation results of each model from 5 replications
that are initialized randomly. When we train a model with
LSTM or GRU as the text representation learner, words are
embedded using 100-dimensional GloVe [37] for Yelp-HAT
and Movie Reviews. For N2C2 dataset, we use the pre-trained
embeddings from BioMed [38]. When the text representation
learner is BERT, we use the WordPiece embedding [29]
provided by BERT model for all three datasets. All code and

3https://github.com/huggingface/transformers

further training settings are publicly available4.

E. Experimental Results

1) Learning from Limited Labels: We first evaluate
HELAS’s capacity to learn from very limited levels of HAMs,
specifically focusing on the case where only 2% of training
data have HAMs. As always, the entire training dataset still has
classification labels. In this experiment, we measure the behav-
ioral similarity and the accuracy of all compared methods on
the Yelp-HAT, N2C2, and Movie Reviews dataset, randomly
down-sampling the HAM annotations to 2%. Our results are
shown in Table I, where we first observe that our HELAS
models achieve superior behavioral similarity and accuracy
compared to all baseline models.

For the Yelp-HAT sentiment classification task, all HELAS
models achieve significant gains in behavioral similarity (up
to 9%) compared to the baseline models. HELAS with LSTM
achieves the most substantial improvement in accuracy by 4%.
Great gains in behavioral similarity indicate that the human-
like attention learner in HELAS models can better mimic the
relation between context and human-like attention even with a
limited amount of word-level labels more. The HELAS models
show improvement in the classification accuracy for all three
core sequence algorithms, with HELAS-BERT achieving the
least gain. This is likely because the HELAS-BERT model is

4https://github.com/zdy93/HELAS
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(a) Yelp-HAT dataset with text representation learners: LSTM, GRU, and BERT shown on columns 1, 2 and 3, respectively.
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(b) N2C2 dataset with text representation learners: LSTM, GRU, and BERT shown on columns 1, 2 and 3, respectively.
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(c) Movie Reviews dataset with text representation learners: LSTM, GRU, and BERT shown on columns 1, 2 and 3, respectively.

Fig. 3: Compared performance on three datasets: Yelp, N2C2, and Movie Reviews. For each dataset, we experiment with
three different text representation learner LSTM, GRU, and BERT. We vary the proportions of available HAMs in the training
dataset as shown on the x-axis, ranging from 2%, 4%, 6%, and 8%. Metrics: (1) Behavioral similarity for human-like attention
generation task, and (2) Accuracy for classification task are both plotted.

pre-trained on a large text corpus, whereas HELAS-LSTM and
HELAS-GRU models are being trained from scratch on a small
dataset. This causes these baseline BERT models to achieve an
already high accuracy, which is challenging to improve upon.

For the N2C2 heart disease prediction task and movie

reviews sentiment classification task, we observe similar trends
as for the Yelp-HAT sentiment classification task. We observe
the largest gains in the classification accuracy for HELAS-
LSTM and HELAS-GRU models compared to HELAS-BERT
over the baseline methods. Improvement in behavioral simi-



TABLE II: Performance of the proposed HELAS and its
three variations on Yelp-HAT Sentiment Classification task,
assuming only 2% of training data contain HAMs.

Methods Behave Sim. Accuracy

LSTM
HELAS .84 ± .00 .92 ± .01
HELAS-W .83 ± .00 .90 ± .00
HELAS-S .77 ± .03 .52 ± .00
HELAS-A .58 ± .00 .85 ± .01

GRU
HELAS .84 ± .00 .92 ± .00
HELAS-W .81 ± .00 .91 ± .01
HELAS-S .78 ± .00 .55 ± .00
HELAS-A .62 ± .01 .86 ± .00

BERT
HELAS .86 ± .01 .96 ± .00
HELAS-W .85 ± .01 .95 ± .00
HELAS-S .76 ± .03 .95 ± .01
HELAS-A .74 ± .02 .94 ± .00

larity is significant (up to 22%) for all core algorithms.
For the SST sentiment classification task, the results show

again that our method outperforms the other alternative meth-
ods on the behavior similarity. Both HELAS-LSTM and
HELAS-GRU methods shown improvement in behavioral sim-
ilarity by 2% and accuracy by around 5-6%. Most methods
benefit from rich discriminative signals on this task and reach
comparable performance when pairing with the BERT model.

Further results on other percentages of HAM availability are
shown in Figure 3. Because we only labeled 400 sentences
in the SST dataset, we did not conduct experiments on
other percentages of HAM availability for the SST sentiment
classification task. We observe that our HELAS models keep
outperforming state-of-the-arts baselines across three tasks as
the HAM proportion increases from 2% to 8%. Note that
External Attention SCHA. utilizes an external source of HAMs
and has no access to HAMs in classification task datasets,
so its performance remains unchanged as HAM proportion
increases.

2) Ablation Study: To test the performance gained by our
customized Human-like Attention Learner and Contextualized
Representation. We design three variations of our proposed
methods, either context vector or attention function in each of
which are different from HELAS model.
• HELAS-W: A variation of HELAS where we remove the

document representation r from the Contextualized Represen-
tation c. This model may ignore information from some words
with low attention.
• HELAS-S: A variation of HELAS where we remove

the weighted sum of word representations
∑
t α̂tet from the

Contextualized Representation c. This model cannot leverage
word importance information from attention module.

• HELAS-A: A variation of HELAS where attention scores
are defined as the similarity of word representation et with the
vector representation r: α̂ = sigmoid(e>t r).

Experimental results on Yelp-HAT dataset are presented
in Table II. We test all three variations with three differ-
ent text representation learners. HELAS outperforms both
HELAS-W and HELAS-S, indicating that the combination
of the document representation and the weighted sum of the
word representation does indeed help to improve both the
behavioral similarity and the classification accuracy. HELAS
and HELAS-A performance prove that our specially-designed
human-like attention learner can help our model better capture
the reliance between context and human-like attention and
utilize a limited amount of word-level labels more efficiently.

F. Case Study: Human-like Explanation

In this case study, our goal is to investigate whether human
users prefer HELAS’s MAMs as the best explanation for the
text classification label comparing to MAMs generated by the
other four compared methods. We conducted a user study
involving 18 human participants, capable to read English text,
with equal distribution in gender, and age ranging from 22
to 30 years, to evaluate MAMs on example documents. We
randomly selected 15 examples from Yelp-HAT, N2C2, and
movie review datasets (5 examples from each dataset). To
keep results comparable, all methods use an LSTM as the text
representation learner, and they are trained on data of which
2% have corresponding HAMs. Participants were instructed
to choose the attention map that best provides clues about
the classification label while maintaining the focus on only
the most important words. Each participant was assigned 5
random example documents. For each example, we presented
attention maps generated by all 5 methods; each with words
with higher attention scores highlighted in a darker shade. We
did not disclose the name of the method used for the attention
generation. We randomly sort the choices to remove users’
bias in the order of choices. The ground truth classification
label is presented as a reference.

The results of this case study are illustrated in Table IV. We
found that the number of times that HELAS’s outputs were
chosen by users is 57 out of 90 options, which is significantly
higher than any other method. For each example, to conclude
which method is more preferable, we use majority voting to
aggregate all participants’ selections. Out of 15 examples, the
outputs from HELAS are selected as the best attention maps
for 13 examples. It further confirms that a MAM generated
by HELAS is more human-like than those by other models’.
We note that this result is consistent with behavioral similarity
results in Table I.

Table III visualizes the MAMs generated by HELAS-LSTM
on examples taken from all four datasets. The HELAS-LSTM
is trained on 2%-labeled data. The first example text is a review
from the test set of the Yelp-HAT dataset. We observe that
HELAS successfully assigns the highest attention weights to
the most important words annotated by humans, which are
underlined. Even at first glance, HELAS-generated MAMs



TABLE III: MAMs generated by HELAS. Test examples are from Yelp-HAT, N2C2, Movie Reviews, and SST dataset. Words
are highlighted according to the attention scores. HAMs are shown in bold with underlines.

Dataset: Yelp-HAT Classification Label: positive review
Food is delicious, the service is fantastic, and the rewards program is ridiculously good. My family eats here about once a week...

Dataset: N2C2 Classification Label: the patient had heart disease
coronary artery disease status post non-ST elevation MI , CHF with an EF of 35-40 % . PAST SURGICAL HISTORY : Includes a TAH , appendectomy
, cataract surgery , ovarian cyst removal ...

Dataset: Movie Reviews Classification Label: is positive review
Meet joe black is a well acted romantic drama which explores the meanings of life and love . William parrish ( anthony hopkins ) is a billionaire businessman
on the brink of his 65th birthday ...

Dataset: SST Classification Label: is positive review
Laugh-out-loud lines , adorably ditsy but heartfelt performances , and sparkling , bittersweet dialogue that cuts to the chase of the modern girl ’s
dilemma .

TABLE IV: Case study to evaluate human-like explanation.
This table displays the number of times that a method’s
highlighted words were chosen by users as being the best
explanation. For each document, user choices are aggregated
by majority vote to determine the best method.

Methods Total count of
being selected

Majority vote
on each example

Limited Supervised RA 4 0
Self-labeling RA 10 1
External Attention SCHA 15 1
Joint-learning SCHA 4 0
HELAS (ours) 57 13

provide clues about the classification. This review is labeled
as positive since the food is delicious and the service is great
at this restaurant.

The second example is from the N2C2 heart disease dataset.
We again observe that HELAS focuses on the key information
about the patient’s condition and symptoms. The third and
fourth examples are from the movie review and SST dataset.
We notice that HELAS highlights the reviewers’ compliments
to the two movies, which can represent reviewers’ positive
attitudes towards these movies. In general, MAMs generated
by each method can emphasize key information in the text
related to the classification label.

V. CONCLUSION

In this paper, we define the open problem of explainable
text classification with limited human attention supervision,
with the aim to support the real-world setting in that human
attention maps (HAMs) are often scarce. We propose the
first solution to this problem, named HELAS: Human-like
Explanation with Limited Attention Supervision. Our proposed
method contains two key components: a human-like attention
learner that successfully learns human-like attention weights
conditioned on context information, and a carefully designed
contextualized representation that considers the contribution
from all words to classify the document into a final class. Our
specially-designed joint loss function balances the supervision
signals from both the human-like attention generation and

document classification tasks simultaneously, despite them
having drastically different numbers of labels across training
instances.

Our evaluation studies on three real-world datasets demon-
strate that HELAS outperforms state-of-the-art alternatives
on both learning an accurate text classifier and generating
human-like attention, even when as little as 2% of the data
contain HAMs. This result is consistent across different text
representation learners from LSTM, GRU, to BERT.
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